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A NOTE ON A LEMMA OF SHELAH

CONCERNING STATIONARY SETS

ALAN H. MEKLER, DONALD H. PELLETIER1 AND ALAN D. TAYLOR

Abstract. Let k be an infinite cardinal, let / be a nonprincipal ideal on k and let

/+ = [X ç k: X € /}. S(I) is the following property of ideals: for every A e / +

and every pair of functions /, g from A into k such that, for every a e A,

f(") =£ g(a), there exists a set B C A with Bel* such that/"B n g"B = 0. We

prove that S(I) holds for every weakly selective ideal / on any infinite cardinal k

(including k = u), and that S(I) holds for every K-complete ideal on k if f k is not

strongly inaccessible.

Let k be an infinite cardinal. A (proper) ideal on k is a collection 7 of subsets of k

such that k £ 7 and whenever X, Y e I and Z Q X u Y, then Z G 7. If 7 is an

ideal on k then 7+ denotes the sets of "positive 7-measure"; i.e. 7+ = {X Q k:

X & 7}. 5(7) is the following property of ideals: for every A G 7+ and every pair

of functions/ g from ^4 into k such that, for every a G A, fia) =£ g(«), there exists

a set 7i Ç A with 5 G 7 + such that/"5 n g"7i = 0. Shelah's lemma [EM] is the

assertion S(NSK), where NSK is the ideal of nonstationary subsets of the regular

uncountable cardinal k. The following result will provide a short proof of a

generalization of Shelah's lemma.•

Theorem 1. Let S'(I) denote the weaker version of 5(7) obtained by considering

only functions f and g that are one-to-one. Then S'(I) holds for every ideal I on every

infinite cardinal k (including k = w).

Proof. Let G be the graph on A obtained by making a adjacent to ß (where

a < ß) iff g(a) = fiß). Then each point B G A is adjacent to at most one a < ß

(since otherwise we would have fiß) = g(ax) and fiß) = g(a2) contradicting the

one-to-oneness of g). Thus each ß G A gives rise to a unique decreasing path of

finite length. Without loss of generality, assume that the set B' of points ß G A

having such a path of even length is of positive 7-measure. Since B' is clearly an

independent set in the graph G it follows that if we have a, ß G B' with a < ß

then g(a) ¥=f(ß). Now we simply repeat the procedure (starting with B') with the

roles of / and g reversed. The set B C B' of positive 7-measure so obtained clearly

has the property that/"B n g"B = 0 as desired,   fj

Remark. It is worth noting that we really do not need both / and g to be

one-to-one-just the "larger." That is, if we let A  = {a G A: f(a) < g(a)} and

Received by the editors August 28, 1980 and, in revised form, March 27, 1981.

1980 Mathematics Subject Classification. Primary 04A20.

Key words and phrases. Ideal, stationary sets, normal ideal, weakly selective ideal.

"Research partially supported by the Natural Sciences and Engineering Research Council of Canada

under grant #A8216.
© 1981 American Mathematical Society

0002-9939/81/0000-0570/$02.25

764



NOTE ON A LEMMA OF SHELAH 765

Af = {a G A: g(a) <f(a)} then either Afel+ or Ag G 7+. If, for example,

Ag G 7 + then we can redo the second step in the above proof so as to appeal to

this fact instead of the one-to-oneness of / as follows. Let G' be the graph on B' in

which a is adjacent to ß (where a < ß) iff fia) = g(ß). Then each a is adjacent to

at most one ß > a (since g is one-to-one). Notice also that if a < ß and a is

adjacent to ß then g(a) > g(ß); that is, g(ß) = fia) < g(a). Hence each a gives

rise to a unique increasing path of finite length and so we can proceed exactly as in

the first part of the proof of Theorem 1.

Recall that an ideal 7 on k is said to be normal if every regressive function / (i.e.

fia) < a for a ¥^ 0) defined on a set of positive 7-measure is constant on a set of

positive 7-measure. (Fodor's theorem [F] asserts that NSK is normal if k is a regular

uncountable cardinal.) 7 is said to be weakly selective if every function defined on a

set of positive 7-measure is either constant on a set of positive 7-measure or

one-to-one on a set of positive 7-measure. Weglorz first observed that every normal

ideal 7 is weakly selective. (In fact, if 7 is normal, A G7+, /: A —> k and

f~x({a}) G 7 for every a < k, then the set B = A - {inf(/_1({a})): a < k} is in 7

as can be seen by considering the regressive function h: B—>k given by h(a) =

inf(/"'({a})).) Even on uncountable cardinals there are lots of weakly selective

ideals that are not normal (e.g. {A,Ç.K+:|Ar|<K + };for more see [BTW]). With

this much said, an easy consequence of Theorem 1 is the following.

Corollary. 5(7) holds for every weakly selective ideal I on any infinite cardinal k

(including k = «).

Theorem 1 and its corollary suggest the possibihty that perhaps 5(7) holds for

every ideal I. This, however, is easily seen not to be the case. For example, if D is

an ultrafilter on k and 7 is the ideal on k X k dual to D X D, then the projection

functions show that 5(7) fails. These considerations also show that if k is a

measurable cardinal then there is a K-complete ideal 7 (that is, one closed under

unions of size less than k) for which 5(7) fails. On the other hand, one can use

Theorem 1 (and the remark following it) to show that if k is an infinite successor

cardinal then 5(7) holds for every K-complete ideal on k. Hence, if we momentarily

agree to call k good iff 5(7) holds for every K-complete ideal on k, then we have

that successor cardinals are good and measurable cardinals are not. Our next result

will fill the obvious gap (i.e., it will follow that k is good iff k is not strongly

inaccessible).

Theorem 2. For infinite cardinals k and p, the following are equivalent:

(i)

HI)';
i.e., for every f: [k]2 —> X where X < p, there exists a, ß, y such that a < ß < y < k

andf({a,ß))=f({ß,y)).
(ii) 5(7) fails for some proper nonprincipal p-complete ideal I on k.



766 A. H. MEKLER, D. H. PELLETIER AND A. D. TAYLOR

Proof, (i) -» (ii). Assume that

( l\
\ 1 / <

and let A = {(a, ß): a < ß < k}. We will construct a K-complete proper nonprin-

cipal ideal 7 on the set A so that the projection functions mx and m2 show that 5(7)

fails; this clearly suffices.

Let S = [X Q A : mx(X) n v2(X) = 0} and let 7 be the /¿-complete ideal on A

generated by S (i.e., Y G 7 if f Y Q U 77 for some 77 ç S with \H\ < p). Then 7

is clearly closed downward (i.e., yçArG7=>FG7) and under unions of size

less than p. Moreover, every singleton subset {(a, /?)} of A is in 7 (since a =£ ß).

Hence, it remains only to show that 7 is proper.

Suppose not. Then A = U {A^: £ < X} for some X < p where we have X££§

for each £ < X. We can assume that the Ac's are pairwise disjoint. Define /:

[k]2 -> X by/({a, ß }) = £ iff a < ß and (a, /?) G >L. Since A < p and

/ r \2
«-M j I

we get some £< A and a < ß < y so that /({a, /3}) = £ = /({/?, y}). But then

(a, /?) G A( and (/J, y) G A( so /? G w¡'ylí n ^2AC This contradicts the fact that

Aç G S and thus shows that 7 is proper.

(ü) -» (i). Suppose that h: [k]2 —► A for some A < it and h shows that

\2

K -H> I(1)<u

Let 7 be a proper ti-complete ideal on k and suppose that /, g: A —> k where

A G 7 + and fia) ¥= g(a) for every a G A. For each | < A let A( be given by

^ = {a (E A: h({f(a),g(a)}) = £}.

Since 7 is /¿-complete, X <p and ,4 G 7 + we get that Aç G 7 + for some £ < A.

Without loss of generality assume that B G 7+ where 7? = (a G /l^ fia) < g(a)}.

Now, to complete the proof it suffices to show that/"7? n g"7J = 0.

Suppose not, and choose a, y G B such that fia) = g(y) = ß. Then /(y) < g(y)

= ß = /(a) < g(a) and so/(y) < ß < g(a). But h({f(y), ß}) = Ä({/(y), g(y)}) = |

= K{f(<*), g(«))) = /i({ /?, g(a)}) and so the set {/(y), )8, g(a)} contradicts the

fact that h shows

-(IL D
<>«

Corollary. For regular cardinals k and p, the following are equivalent:

(i)2x > KforsomeXKp.

(ii) 5(7) holds for every p-complete proper ideal I on k.
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Proof, (i) —> (ii). Assume that A < ¡u, and 2A > k. By the previous theorem it

suffices to show that

<~(J)2;

our argument here is only a slight (but necessary) modification of the standard

example (due to Erdös and Rado [ER]) showing that 2X +> (3% So let h: k -+x2 be

one-to-one where *2 denotes the set of all functions mapping A to 2. Define /:

[k]2 -> A X 2 as follows. If a < ß then set/({a, ß }) = (y, Q where

y = inf{£< A: A(a)(£) ^/,(/?)(£)}

and h(a)(y) = i. Now, suppose for contradiction that a < ß <8 and/({a, /?}) =

(y> 0 = /({ ß> S}). Without loss of generality, assume that / = 0. Then A(a)(y) = 0

and h(ß)(y) = 1 (since /({a, ß}) = (y, 0)). But then since f({ß, 8}) = (y, 0) we

have/i(/?)(y) = 0; contradiction.

(ii)-*(i). The Erdös-Rado Theorem [ER] asserts that (2A)+->(A+)2; it follows

trivially from this that if k > 2A for every X < p then

•All
The desired result thus follows from the previous theorem.   □

Remark. A consequence of the above is that if k = sup{(2A)+: A < k} and k is

regular, then 5(7) fails for some proper nonprincipal ju-complete uniform ideal I on

k. (To say that 7 is uniform means that {X C k: \X\ < k} Ç 7.)

Corollary. 5(7) holds for every K-complete proper nonprincipal ideal I on k iff k

is not strongly inaccessible.

We conclude with an easy application of the corollary to Theorem 1. An

ultrafilter % on k is said to be Ramsey if every function/: k —» k is either constant

or a set in % or one-to-one on a set in %. If % is an ultrafilter on k and A is a set

then a subset X of A"/fyL is called standard if there is a B Q A such that

X = 2?K/%. We claim that if % is a Ramsey ultrafilter on k, then any two

elements of A K/Gll can be separated by a standard set. That is, if [/], [g] G A"/slL

and [/] ¥= [g], then the corollary to Theorem 1 yields a set A!" G % so that

f"X n g"X = 0 But now if B = f'X, then [/] G BK/% and [g] $ B"/%. This
application has consequences for certain problems involving cardinalities of ultra-

powers; these will appear elsewhere.
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