
proceedings of the
american mathematical society
Volume 83, Number 4, December 1981

ON THE DIVERGENCE OF EXTENSION PROCEDURES

IN ISOL THEORY

T. G. MCLAUGHLIN

Abstract. We show that the Myhill and Nerode extensions begin to disagree on

the domain of the Nerode extension at a point in the arithmetical hierarchy < A".

This disagreement, at level A?, goes hand in hand with a certain way in which the

Myhill extension fails, at A?, to commute with composition.

1. Introduction. In the theory of isols, there are two classical procedures for

extending a numbertheoretic function f(xx, . . . , xn) to an isoltheoretic partial

function F(XX, . . ., Xn); "extension", of course, implies that / ç F. The first of

these procedures, historically, is the Myhill extension, lifting / to fM, which

proceeds by way of application of the so-called normal combinatorial operators [1].

The other procedure is the Nerode extension [2], lifting/ to/A, which uses what are

called recursive frames. Each method has its special advantages: the Myhill tech-

nique extends each combinatorial function / to a total isoltheoretic function fM

(whereas /A is in general not defined for all «-tuples of isols, i.e., is "strictly

partial"); on the other hand, the Nerode method is highly flexible in that it requires

only partial operators (so-called "numerical frame maps") as opposed to the more

rigidly circumscribed total operators called "combinatorial". It is well known (see

[2]) that the two procedures give the same results when applied to the core class of

Fs studied by isol theorists, i.e., the class of recursive combinatorial functions.

However, once one departs from the class of recursive functions, certain blemishes

begin to appear (even though both procedures retain utility for the study of the

isols); e.g., if fix) and g(x) are combinatorial but/is not recursive, then it need not

be true that fM( gM(X)) = (/ ° g)M(X) holds for all isols X. Moreover, as already

mentioned, if / is nonrecursive then dom(/A) will be a proper subset of the isols;

indeed [2], U don\(fA) will be a meager subset of 2N relative to the usual (Cantor

space) topology on 2N. Given this influx of "pathology" at higher-than-recursive

levels, it should come as no surprise that there exist combinatorial functions

f: N^>N and isols X such that X G dom(/A) and fA(X) ¥=f„(X). Indeed, one

would expect this to be a well-known phenomenon, frequently alluded to in the

literature. Yet I do not know of a single definite reference for it, and believe that it

has been previously overlooked (though, in all likelihood, implicitly assumed): all

previous effort seems to have been devoted to the very laudable enterprise of

pushing the agreement between /A and fM as far "upward" as possible (see [3]). In
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the present article, an example of disagreement between /A and fM, on don\(f¿), is

provided; my example exhibits a combinatorial function / G A3 and, at the same

time, shows the compositional misbehavior of the Myhill extension at level A3. (I

am indebted to Erik Ellentuck for pointing out that my approach yields / G A3

rather than merely / G A° as I had originally thought. In addition, Ellentuck

pointed out to me that the proof actually turns on a particular realization of the

pathological inequality fM(gM(X)) + (f » g)M(X).)

I shall assume familiarity on the reader's part with the principal contents of [1]

and [2], as well as with the standard notations and terminologies of ordinary

recursion theory.

2. "Bad" combinatorial functions in A3. Let f:N—>Nbea. combinatorial func-

tion; i.e., fix) = 2f_0 c¡(?) holds with c, > 0 for all i. f is said to be recursively

bounded if there is a recursive function g: AT —» N such that (Vi)[/(i) < g(i)];

equivalently, we can ask for a recursive h such that (V/)[c( < «(/)]. If the function g

(the function «) is merely recursive in d, where d is some degree, we call /

d- bounded.

2.1. Lemma. There exists a recursively bounded combinatorial function f E. A3 — A2

such that the function f(2x) is recursive.

Proof. Let (<b*\e G A^> be Kleene's F"4-predicate enumeration [5, §65] of the

class of those unary partial numbertheoretic functions that are partial recursive in

A, where A is a fixed set (of numbers) of degree W. Then every unary A° function

is = 4>* for some e. Furthermore, if we let F(e, x, y) be the predicate "<j>*(x) is

defined and = v" then F(e, x,y) is of degree < 0"; hence, any function recursive

in F(e, x, y) is A^. We shall define / by induction. The first couple of steps in the

construction of /will be given explicitly; it should then be clear to the reader what

is going on in our formulation of the induction step.

Step 0. Set/(0) = 0. If -,F(0, 1, 2), define fil) = 2; if F(0, 1, 2), define fil) = 1.
Observe that there are two possibilities for <Co,e,>: either <C(„ c,> = <0, 1> or

<c0, C]> = <0, 2>. In the former case,/(2) will have to be > 2, while in the latter we

must have /(2) > 4. To be sure that / ends up combinatorial, therefore, we must

play safe and define /(2) to be at least 4.

Step 1. Set/(2) = 4. Then there are the following possibilities for <c0, c,, c2>:

<0, 1, 2>, <0, 2, 0>. This implies that for safety's sake/(3) will have to be taken at

least as large as max{(?) + 2(J), 2(])} = max{9, 6} = 9. If —, F(l, 3, 9), set/(3) = 9;

if F(l, 3,9), set /(3) = 10. This gives rise to the following possibilities for

<Crj, c„ c2, c3>: <0, 1, 2, 0> or <0, 2, 0, 3> if /(3) = 9; <0, 1, 2, 1> or <0, 2, 0, 4> if

/(3) = 10. Therefore,/(4) will have to be taken

> max{(t) + 2(42), 2(i) + 3®, (?) + 2® + Q, 2(.) + 4(«)}

= max{16, 20, 20, 24} = 24.

Step   2.   Set  /(4) = 24.   Calculate   the   resulting   set   of   possibilities   for

<C(„ c,, c2, c3, c4>, and then advance toward Step 3 along exactly the same lines as

in the preceding two steps.
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For a precise description of the inductive passage from Step n to Step n + 1, we

assume that Step n has been concluded and that, with its conclusion, we

have completed the definition of fix) for x < 2« ■+■ 1. We assume, moreover, that

along with the first 2« + 1 values of/we have defined sequences (c^ • ■ • > c2n+i)

and <£,, k3, . . . , k2n+x} of nonnegative integers, in such a way that the

following conditions hold: (a) fix) = 2 c¡(x¡), for x < 2« -I- 1 ; (b) for all / < n,

-.Fíj, 2/ + l,/(2/ + 1)); (c) for each/ < n, either f(2j + 1) = ky+x or f(2j + 1)

= k2J+x + 1; (d) the sequence (,kx, k3, . . ., k2n+xy has been computed effectively,

i.e. with no appeals to oracles for information; (e) the values f(2j), j < n, have all

been computed effectively. Now, in order to have secured condition (b), we will

have needed to appeal to an oracle for F in dealing with odd arguments < 2/i + 1.

The sequence <c0, . . ., c2n+x) has, therefore, been obtained with the aid of an

oracle for 0". Nevertheless, conditions (c) and (e) provide a finite set S =

{('c,,, . . . ,'c2n+x}\i e. 1} of sequences of nonnegative integers, with the property

that (c0, . . ., c2„+1> G 5; moreover, in view of condition (d), the exact contents of

the set 5 can be effectively determined. We may therefore carry out Step n + 1 as

follows.

Step n + 1. Set

f(2n + 2) = maxj X^2* * 2)\% • • • , 'c2n + 1> G 5 J.

This gives rise to a well-determined set 5' oí possibilities for <c0, . . . , c2n+2), one

such possibility for each sequence <'c0, . . . , 'c2n+1> G 5. Next, set k2n+3 =

max{2?r02 d,(2n;3)\<d0, ..., d2n+2) G S'}. If ^F(n + 1, 2n + 3, A:2n+3), set

f(2n + 3) = k2n+3; otherwise set f(2n + 3) = k2n+3 + 1. Finally, let C2„+2 and

c2n+3 De nonnegative integers such that/(x) = 2 c,(*) holds for x < 2n + 3. It is

easily seen that conditions (a)-(e) remain satisfied with n + 1 in place of n, and the

induction step is complete.

It is evident that k2x+x is a recursive function of x, that deg(/) < 0" (i.e.,

/ G A% and that/(2x) is recursive. / is combinatorial by condition (a), since c, > 0

for all i. The fact that / is not A2 is a consequence of condition (b) holding at the

end of each step of the construction; while the recursively bounded character of /

follows from condition (c), in view of the recursiveness of the functions k2x+x and

f(2x). The proof of the lemma is complete.

2.2. Lemma. Let f:N^>N be a (r'-bounded combinatorial function such that

f G A2, let A be an infinite cosimple isol, and suppose that there exist nonnegative

integers m and n, with n > 2, such that the function finx + ni) is recursive. Then

fA(nA + m) is defined and fA(nA + m) ^fM(nA + m). Moreover, if g(x) =

finx + m)for all x then gM(A) =£fM(nA + m).

Proof. Let nx + m, n > 1, be such that/(«x + m) is a recursive combinatorial

function. Let $ be the normal recursive combinatorial operator inducing

finx + m); and let a be an infinite, isolated, H°x set. If A is the isol represented by

a, then nA + m is represented by the set a' = {x\x < m) u {m + x\x = 0

(mod n)&x/n G a) u • • • U {m + x\x = n — I   (mod n)&(x — n + l)/n G a}.
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Let §• = {({x\x < m) u {m + x\x = 0 (mod n)&x/n G ß) u • • ■ U {m + x\x

= n - l(mod n)&(x - n + l)/n G /?}, $(ß)>| /? is a finite subset of N). It is easy

to see that 9 is a recursive /-frame. (Recall that Í» induces finx + m), and that

combinatorial operators are multiplicative.) Furthermore, it is clear, since combina-

torial operators are monotone and satisfy the condition

C(a) = U {C(ß)\ß ç a&ß is finite},

that the pair <a', 3»(a)> is attainable from 'S. Thus fA(nA + m) is defined

and = B, where B is the isol containing 3>(a). Also, we have B = gM(A); so, to

complete the proof of the lemma it suffices to show that fM(nA + m) =?*= B. Let S^

be the normal combinatorial operator inducing/. Then ^(a') is a representative of

fM(nA + m); and, if fM(nA + m) = B holds then there must exist a one-to-one

partial recursive function p such that ®(a) £ dom(/?)&/>(3>(a)) = ^(af). Assume,

for an argument by contradiction, that such a function p exists. Now, '^(a') =

{j(x,y)\Dx C a'&y < c^^)}; here <7J>„|/i G TV) is the usual "canonical" index-

ing of the finite sets, and/: N2 —> TV is the usual one-to-one effective pairing map

from W2 onto TV. By (the proof of) Proposition 11 of [6], $>(a) is a H, set. Hence

p(®(a)), i.e., y(a'), is the difference of two 2° sets. Certainly, then, ^(a') is of

degree < 0'. Let h : N -» TV be a function of degree < 0' such that (yi)[ct < A(/)].

We now specify a procedure for calculating the sequence <c,|i G TV) recursively in

0'; this will provide the desired contradiction, since it implies that / G AÍJ. To

compute c„, « > 0, let w be a number such that 7)^, is an «-element subset of a'.

Such a number w can obviously be found through appeal to an oracle for 0', by a

procedure uniform in n. Next, find the set of all numbers/(w, v) such that (i)

P l(j(w> y)) is defined and belongs to <ï>(a) and (ii) v < h(n). Clearly, this set can be

exactly determined through appeal to an oracle for W, using a procedure uniform in

n; moreover, its cardinality is c„. Thu.% deg(/) < C; i.e., / G A° But/ G A^ is a

contradiction, and the lemma is proved.

2.3. Theorem. There exist a unary combinatorial function f G A3 and a cosimple

regressive isol A such that (1) A & dom(/A), (2) 2.4 G donX/J, (3) fA(2A) ¥=

fM(2A), and (4) gM(A) *fM(2A) where g(x) = f(2x)for all x.

Proof. Let/be as in Lemma 2.1; then, since each recursively bounded function

is a fortiori 0'-bounded, / meets the conditions set forth in the hypotheses of

Lemma 2.2 with n = 2 and m = 0. Since / itself is not recursive, it follows from

results in [4] that if A is a strongly universal, cosimple, regressive isol then

A & dom(/A). Lemma 2.2 provides the remaining three assertions of the theorem.

3. Some remarks about A2. Having found the example of §2, it is natural to try to

find a better example, that is, one in which deg(/) < W. It is known from results in

[3] that any such / would have to he outside the class of "Äf" combinatorial

functions. If we attempt to use the approach of §2, of course mixing in some

approximations, in order to obtain Theorem 2.3 with "/ G A^" replaced by "/ G A2

— R Î", then Lemma 2.1 presents no difficulty: it is easy to construct a recursively

bounded combinatorial function / such that / G A2 — R\ and f(2x) is recursive.
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Lemma 2.2, however, presents a problem: in adapting its proof, we would attempt

to produce a contradiction by arguing that if fM(nA + m) = B then/ is R\. The

definition of R Î, however, requires that in making successive approximations to an

/r-element subset Dw of a' we avoid ever making an overestimate of

card({/(w,y)\y < h(n)&j(w,y) G dom(p-x)&p-x(j(w,y)) G 4»(a)}).

We have so far found no way to avoid such temporary overestimates. It seems

plausible, nonetheless, that an example can be located in A2, perhaps by a

completely different line of argument but almost certainly by an argument involv-

ing some use of "priorities".

One might be tempted to go so far as to conjecture that any combinatorial

function / G A2 — 7?T is "bad", especially after noting, in connection with the

framework of [3], that it is exactly the 7?| combinatorial functions whose associated

normal operators are "partial recursive". That conjecture, however, is false for a

curiously "vacuous" reason: it is easy to see that if /A has any infinite isols in its

domain then / has an infinite partial recursive subfunction, and it is not difficult to

construct a combinatorial function / G A^ — R î such that / has no infmite partial

recursive subfunctions. Thus, we have at present httle idea as to the exact contents

of the class {/|/is a unary combinatorial function in A2 and/A = fM on don\(f¡^).

Since this paper was submitted, the more clear-cut of the problems posed or

suggested in §3 have been solved by Ellentuck. In particular, Ellentuck has found a

refinement of the last part of the proof of Lemma 2.2, from which refinement it

follows (via, say, the existence of minimal pairs of r.e. degrees) that the combina-

torial function of Theorem 2.3 can be located in A^. He has, moreover, exploited

the technique of "generic isols" to obtain very strong results in the noncosimple

case. Ellentuck's work also implicitly contains the solution to the characterization

problem for {/ G A\-R\\f is combinatorial and /A Q fM): it turns out to be just

the set of A2-7f| combinatorial functions having no infinite partial recursive

subfunctions!
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