A FIXED POINT THEORY FOR MULTI-VALUED MAPPINGS

LECH PASICKI

ABSTRACT. In the present paper several theorems are proved for the multi-valued mappings that operate on the type I and type II spaces defined in [10]. The theorems generalize the well-known results for the locally convex spaces.

1. Fundamental theorems. We refer to the Definitions 1-4 from [10].

It is known that every compact self-map of a type I space has a fixed point (see [11]). Now we will prove in a similar way a theorem for the type II spaces.

1.1. THEOREM. Let X be a type II space and let $f: X \to X$ be a compact map for which $\overline{f(X)}$ is finite dimensional. Then f has a fixed point.

PROOF. Let us assume dim $\overline{f(X)} \le p-1$ and Fix $f = \emptyset$.

We can find an open cover $\mathfrak{V} = \{W_x\}_{x \in \overline{f(X)}}$ of $\overline{f(X)}$ for which $S_z(I, W_x) \cap$ $f^{-1}(W_r) = \emptyset, z \in W_r$. So we may assume

(1)
$$S_{z_1}(I, S_{z_2}(I, \ldots, S_{z_p}(I, W_x) \ldots) \cap f^{-1}(W_x) = \emptyset$$

for $z_1, \ldots, z_p \in W_x$ (see [10, (6)]). There exists an open star refinement \mathfrak{A} of order $\leq p$ for \mathfrak{V} [3, 5.1.12, p. 377; 7.2.4, p. 484]. Choose a finite cover $\{U_i\}_{i=1}$, of $\overline{f(X)}$, $x_i \in U_i$ and $W_i := W_{x(i)} \supset \operatorname{St}(U_i, \mathcal{O}_i)$, $i = 1, \ldots, n$. Let it be $X_i = I$ $X \setminus f^{-1}(U_i) = \overline{X}_i$. Let us define $g: I^n \to X$ as follows:

(2)
$$g(s_1,\ldots,s_n) = S_{x_1}(t_1,S_{x_2}(t_2,\ldots,S_{x_{n-1}}(t_{n-1},x_n)\ldots)$$

for $\sum_{i=1}^{n} s_i = 1$, $t_i = s_i / \max\{s_i : i = 1, ..., n\}$, i = 1, ..., n. Write $K\{i_1, ..., i_k\}$ = $\{g(s_1,\ldots,s_n): s_i=0 \text{ for } i\neq i_j, j=1,\ldots,k\}$. Then for $\bigcap_{j=1}^k U_{i_j}\neq\emptyset$ (implies $k \leq p$) we have

$$K\{i_1,\ldots,i_k\} \subset S_{x_{i_1}}(I,\ldots,S_{x_{i_k}}(I,W_{i_1})\ldots)$$

$$\subset X \setminus f^{-1}(W_{i_1}) \subset X \setminus \bigcap_{j=1}^k f^{-1}(U_{i_j}) = \bigcup_{j=1}^k X_{i_j},$$

because $x_{i_1}, \ldots, x_{i_k} \in W_{i_1}$. Now it can be easily seen that always $K\{i_1, \ldots, i_k\} \subset$

 $\bigcup_{j=1}^{k} X_{i_{j}}.$ The set $g^{-1}(K\{i_{1},\ldots,i_{k}\})$ contains a k-simplex and $g^{-1}(X_{i})$ are closed as g is continuous [3, 3.4.8, p. 210], (cf. [11]). It can be seen now that $\bigcap_{i=1}^n g^{-1}(X_i) \neq \emptyset$

Received by the editors August 12, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54H25, 54C60, 55P99.

Key words and phrases. Homotopy, type I space, fixed point, multi-valued mapping, open cover.

[3, Theorem 4, p. 510] and hence $\bigcap_{i=1}^n X_i \neq \emptyset$. This latter assertion implies

$$X \neq X \setminus \bigcap_{i=1}^{n} X_i = \bigcup_{i=1}^{n} f^{-1}(U_i) = X.$$

This contradiction proves Fix $f \neq \emptyset$.

In the previous papers of mine $\overline{\cos} A$ was used in place of $\overline{\cos} A$. The next lemma states that $\overline{\cos} A$ can be treated in another way, similarly as in the linear topological spaces.

1.2. LEMMA. Let X be S-contractible and for $\emptyset \neq A \subset X$ let us write $\overline{\cos} A = \bigcap \{D = \overline{D} \subset X : S_x(I, D) \subset D, x \in A \subset D\}$. Then $\overline{\cos} A = \overline{\cos} A$.

PROOF. Obviously $\overline{\cos A} \subset \overline{\cos A}$. Let it be $D \subset X$ and $S_x(I, D) \subset D$ for $x \in A$. Then we have $S_x(t, \overline{D}) \subset \overline{S_x(t, D)}$ for any $t \in I$ and $x \in A$. Hence

$$S_x(I, \overline{D}) = \bigcup_{t \in I} S_x(t, \overline{D}) \subset \bigcup_{t \in I} \overline{S_x(t, D)} \subset \overline{\bigcup_{t \in I} S_x(t, D)} \subset \overline{D}$$

which gives $\overline{\cos} A \subset \overline{\cos} \overline{A}$ for $D = \cos A$.

For a space X let 2^X , C(X), T(X) denote respectively the family of all nonempty, nonempty and closed, nonempty, closed and S-convex subsets of X.

Suppose X, Y, Z are nonempty and $G: X \to 2^Y$ is a multi-valued mapping. Then for $\emptyset \neq A \subset X$ $G(A) := \bigcup_{x \in A} G(x)$ and $G(\emptyset) = \emptyset$ [1, p. 22]. If $G_1: Y \to 2^Z$, $(G_1 \circ G)(x) := G_1(G(x))$ [1, p. 24]. If $H: 2^Y \to 2^Z$ is set-to-set function, $(H \circ G)(x) = H(G(x))$ $(G(x) \in 2^Y)$. Let it be in addition $(A \cap G)(x) := A \cap G(x)$ for $A \subset Y$.

1.3. DEFINITION (CP. [1, pp. 114, 116]). Let X, Y be spaces. A multi-valued mapping $G: X \to 2^Y$ is upper semicontinuous if for each neighborhood V of any G(x) there exists a neighborhood U of x, for which $G(U) \subset V$; G is compact if it is upper semicontinuous and $\overline{G(X)}$ is compact.

In the sequel the multi-valued mappings will be called mappings.

Let us define for an S-contractible space X a special set-to-set function as follows:

- (3) $F(A) = \bigcap_{U \in \mathcal{U}_A} \overline{\cos} U, \text{ where } \mathcal{U}_A \text{ for } A \in 2^X \text{ are such families of neighborhoods as satisfy}$
- (4) if $V \in \mathcal{Q}_A$, there exists $V_1 \in \mathcal{Q}_A$ such that for any $\emptyset \neq C \subset V_1$ there exists $V_2 \in \mathcal{Q}_C$, $V_2 \subset V$.

It can be seen that in particular \mathfrak{A}_A can be the family of all neighborhoods of A. Besides, from (4) follows

(5)
$$\emptyset \neq C \subset A \text{ implies } F(C) \subset F(A).$$

For an S-contractible subspace $D = \overline{D}$ of $X F_{|2^D}$ will denote the function obtained from F by taking $\mathfrak{A}_A \cap D$ in place of \mathfrak{A}_A for $A \in 2^D$.

1.4. THEOREM. Let X be a normal type I space for which $G: X \to 2^X$ is upper semicontinuous and $\overline{\cos} G(X)$ is compact. Then $F \circ G$ has a fixed point.

PROOF. Suppose $x \notin (F \circ G)(x)$ for $x \in X$. Thus a neighborhood $V \in \mathfrak{A}_{G(x)}$ and such neighborhood U of x can be found, for which $U \cap \overline{\cos} V = \emptyset$. It follows there exists a neighborhood P of x with $G(P) \subset V_1 \subset V$ (for $A = G(x) V_1, V$ satisfy (4)). In view of (5) we have for $W := U \cap P$, $W \cap (F \circ G)(W) \subset U \cap F(G(P))$. We obtain from (4), $U \cap F(G(P)) \subset U \cap F(V_1) \subset U \cap \overline{\cos} V = \emptyset$. Now it is seen there exists an open cover $\mathfrak{A} = \{W_x\}_{x \in \overline{\cos} G(X)}$ of the set $\overline{\cos} G(X)$ satisfying

(6)
$$W_x \cap (F(G(W_x))) = \emptyset \text{ for } x \in \overline{\mathfrak{co}} S G(X).$$

It follows [3, 5.1.12, p. 377; 5.1.9, p. 375] that there exists a star finite partition of unity $\mathfrak A$ subordinated to $\mathfrak A$. Let us choose from $\mathfrak A$ a cover $\mathfrak V = \{f_i^{-1}(0,1)\}_{i=1,\ldots,n}$ of $\overline{\cos} G(X)$. Assume $x_i \in V_i \in \mathfrak V$, $\operatorname{St}(V_i, \mathfrak V) \subset W_i \in \mathfrak M$ for $i=1,\ldots,n$. In view of Tietze's theorem we may think f_i maps X into I for any $i=1,\ldots,n$.

Let us write

$$p_{i}(x) = \min \left\{ 1, \left| 1 - \sum_{i=1}^{n} f_{i}(x) \right| \right\},$$

$$t_{i}(x) = \left(f_{i}(x) + p_{i}(x) \right) / \max \left\{ f_{i}(x) + p_{i}(x) : i = 1, \dots, n \right\}.$$

It can be seen that $p_i: X \to I$ are maps, $p_i(x) \neq 0$ for $\sum_{i=1}^n f_i(x) = 0$ and $p_i(x) = 0$ for $x \in \overline{\cos} G(X)$. Besides, for any x there exists an index i for which $t_i(x) = 1$. Now let it be for $x \in X$ and $y_i \in G(x_i)$

(7)
$$h(x) = S_{y_1}(t_1(x), S_{y_2}(t_2(x), \ldots, S_{y_{n-1}}(t_{n-1}(x), y_n) \ldots).$$

The continuity of h can be proved in a similar way as the continuity of g (see (2)). From $h(X) \subset \cos G(X)$ it follows that h has a fixed point. Suppose $x_0 = h(x_0)$. There exists a neighborhood W_i containing

$$D := (\overline{\operatorname{co}} \operatorname{S} G(X)) \cap \bigcup \{f_i^{-1}((0, 1): f_i(x_0) \neq 0\} \quad (x_0 \in D).$$

On the other hand $x_0 \in h(D) \subset \overline{\cos} G(W_i) \subset (F \circ G)(W_i)$ which contradicts (6).

1.5. THEOREM. Let $\overline{\cos}S$ G: $X \to C(X)$ be a compact mapping for a normal type I space X. Then $\overline{\cos}S \circ G$ has a fixed point.

PROOF. Suppose $x \notin \overline{\cos} G(x)$ for $x \in X$. Then there exist two neighborhoods U, V of x and $\overline{\cos} G(x)$ respectively for which $U \cap V = \emptyset$. The upper semicontinuity of $\overline{\cos} \circ G$ implies the existence of a neighborhood P of x for which $\overline{\cos} G(P) \subset V$. Then for $W_x = U \cap P$ we have

(8)
$$W_x \cap \overline{\infty} S G(W_x) \subset U \cap \overline{\infty} S G(P) \subset U \cap V = \emptyset.$$

Now we can take (8) in place of (6) and continue the proof of the previous theorem.

1.6. THEOREM. Let $G: X \to 2^X$ be an upper semicontinuous mapping for a normal space of type II. Then $F \circ G$ has a fixed point if $\overline{\cos} S G(X)$ is compact and finite dimensional.

PROOF. We repeat the proof of Theorem 1.4. The existence of a fixed point for h follows from Theorem 1.1.

1.7. THEOREM. Let $\overline{\cos} \circ G: X \to C(X)$ be a compact mapping for a normal type II space X. Then $\overline{\cos} \circ G$ has a fixed point if $\overline{\cos} G(X)$ is finite dimensional.

PROOF. Compare the proofs of Theorem 1.5 and Theorem 1.6.

- 2. Consequences of the fundamental theorems. The next four theorems are the immediate consequences, as every compact space is normal.
- 2.1. THEOREM. Let $G: X \to 2^X$ be an upper semicontinuous mapping for a compact type I space X. Then $F \circ G$ has a fixed point.
- 2.2. THEOREM. Let $\overline{\cos} \circ G \colon X \to C(X)$ be a compact mapping for a compact type I space X. Then $\overline{\cos} \circ G$ has a fixed point.
- 2.3. THEOREM. Let $G: X \to 2^X$ be a compact mapping for a compact type II space X. Then $F \circ G$ has a fixed point if $\overline{\cos} G(X)$ is finite dimensional.
- 2.4. THEOREM. Let $\overline{\cos} \circ G: X \to C(X)$ be a compact mapping for a compact type II space X. Then $\overline{\cos} \circ G$ has a fixed point if $\overline{\cos} G(X)$ is finite dimensional.
- 2.5. THEOREM. Let $X = \overline{X}$ be a normal type I subspace (for S) of an S-contractible space Y and let $G: X \to 2^Y$ be such a mapping that $X \cap G$ and $(\overline{\cos} \circ (X \cap G))(X)$ are compact. Then $F \circ G$ has a fixed point.

PROOF. In view of Theorem 1.4, $F_{|2^X} \circ (X \cap G)$ has a fixed point. We have $(F_{|2^X} \circ (X \cap G))(x) \subset (F \circ G)(x)$ for $x \in X$ and therefore $F \circ G$ has a fixed point.

2.6. THEOREM. Let X be a compact type I subspace (for S) of an S-contractible space Y and let $G: X \to 2^Y$ be such a mapping that $X \cap G$ is compact. Then $F \circ G$ has a fixed point.

The analogs of the above two theorems for the type II spaces and for the function $\overline{\cos} \circ G$ can be deduced easily as $\overline{\cos} \circ (X \cap G) = X \cap (\overline{\cos} \circ (X \cap G))$.

2.7. THEOREM. Let X be a normal type I space and let $G: X \to T(X)$ be a compact mapping for which $\overline{\cos} G(X)$ is compact. Then G has a fixed point.

PROOF. The theorem is a consequence of Theorem 1.5 as $\overline{\cos} G(x) = G(x)$ for $x \in X$.

Theorem 2.7 is a generalization of Ky Fan's theorem for mappings in the locally convex spaces [4, Theorem 1].

- 2.8. Definition. A space X is of type 0 (locally type 0), if it is S-contractible (locally S-contractible) for S satisfying
- (9) for any $A \subset X$ and any neighborhood V of $\overline{\cos} A$ there exists a neighborhood U of A for which $\cos U \subset V$.

It can be seen that every type 0 space is of type I.

2.9. LEMMA. Let $\{X_s\}_{s\in T}$ be a family of type 0 spaces. Then $\prod_{s\in T} X_s$ is of type 0 (similarly for the locally type 0 spaces).

PROOF. Let it be $x = \prod_{s \in T} x_s$, $y = \prod_{s \in T} y_s$ and $t \in I$. Then $S_x(t, y) := \prod_{s \in T} S_{x_s}^s(t, y_s)$ is the needed homotopy (S^s satisfy (9) for $s \in T$) because the projection is continuous [3, 2.3.6, p. 108] and the diagonal

$$\Delta \colon \prod_{s \in T} (X_s^{X_s})^I \to \left(\prod_{s \in T} X_s^{X_s}\right)^I$$

is a homeomorphism. The other conditions can be easily checked.

2.10. LEMMA. For an arbitrary set A in a regular type 0 space we have $\overline{\cos} A = P_A := \bigcap \{\overline{\cos} U : A \subset U = \text{Int } U\}.$

PROOF. Obviously $\overline{\cos} A \subset P_A$. Suppose $x \in P_A$ and $x \notin \overline{\cos} A$. There exists a neighborhood V of $\overline{\cos} A$ for which $x \notin \overline{V}$. We can find a neighborhood U of A with $\overline{\cos} U \subset \overline{V}$, which gives a contradiction.

- 2.11. COROLLARY. For an arbitrary upper semicontinuous mapping $G: X \to 2^X$, $\overline{\cos} \circ G$ is upper semicontinuous, if X is a regular type 0 space.
- 2.12. THEOREM. Let $G: X \to 2^X$ be a compact mapping for a normal type 0 space. Then $\overline{\cos} \circ G$ has a fixed point if $\overline{\cos} G(X)$ is compact.

PROOF. This fact follows from Theorem 1.5 and 2.11.

2.13. THEOREM. Let X be a compact type 0 space. Then for any compact G: $X \to 2^X$, $\overline{\cos} \circ G$ has a fixed point.

We can easily formulate the type 0 versions of Theorems 2.5, 2.6.

Let us write for the nonempty subsets A, D of a metric space (M, d) and $x \in M$, r > 0

$$d(x, A) = \inf\{d(x, y): y \in A\}, \quad d(A, D) = \inf\{d(x, D): x \in A\},$$

$$B(A, r) = \{x \in M: d(x, A) < r\}, \quad P_r(D) = A \cap B(D, d(A, D) + r)$$

and

$$P(D) = \bigcap_{r>0} P_r(D).$$

2.14. THEOREM. Let A be a compact set of type I in a metric space (M, d). Then $E \circ G := \bigcap_{r>0} \overline{\cos}(P_r \circ G)$: $A \to C(A)$ has a fixed point if $G: A \to C(M)$ is compact.

PROOF. It is seen that $P \circ G: A \to C(A)$ and thus $\overline{\cos} P(G(A))$ is compact and $\{P_r(G(x))\}_{r>0}$ is a family of neighborhoods of P(G(x)) for which (4) holds with the suitable substitutions. In view of Theorem 1.4 it is enough to show that $P \circ G$ is upper semicontinuous.

There exist points $y \in G(x)$, $z \in A \setminus B((P \circ G)(x), r)$ that give the distance between sets. Let us write $a_r = d(y, z) - d(A, G(x))$. Obviously $a_r > 0$ and hence

 $P(B(G(x), a_r/2)) \subset B((P \circ G)(x), r)$. Now it is seen that $P \circ G$ is upper semicontinuous.

If $G: A \to M$ is a map, $\overline{\cos} P_r(G(x)) = A(G(x), r)$ and it is seen that Theorem 2.14 generalizes Theorem 4 from [10].

We have mentioned only two theorems for the type II spaces in the present section, but all the other theorems for the type I spaces in this paper can be easily transferred to the type II case.

3. Generalized condensing and quasicompact mappings.

3.1. DEFINITION (CF. [6, pp. 12, 13]). Let X be a space and for $\emptyset \neq Z \subset X$ let G: $Z \to 2^X$ be a mapping. Then an S-contractible set $D = \overline{D} \subset X$ is characteristic of G if $Z \cap D \neq \emptyset$, $G(Z \cap D) \subset D$ and $\overline{\cos} G(Z \cap D)$ is compact (in the case $G = \overline{\cos} \circ H$ we assume only the compactness of $\overline{G(Z \cap D)}$).

Let X be an S-contractible space and $W = \overline{\cos} W \subset X$, $K = \overline{\cos} K \subset X$; a mapping $G: W \cap K \to 2^K$ is quasicompact if it has a characteristic set on which G is upper semicontinuous.

3.2. THEOREM. Let X be a normal type I space for which $\overline{\cos} \circ G \colon X \to C(X)$ is quasicompact. Then $\overline{\cos} \circ G$ has a fixed point.

PROOF. See Theorem 1.5.

3.3. THEOREM. Let X be a normal type I space for which $G: X \to 2^X$ is quasicompact. Then $F \circ G$ has a fixed point.

PROOF. Let D be a set characteristic of $G \neq \overline{\cos} \circ H$. Then from Theorem 1.4 follows the existence of $x_0 \in (F_{|2^D} \circ G)(x_0) \subset (F \circ G)(x_0)$. If $G = \overline{\cos} \circ H$, G itself has a fixed point (Theorem 3.2) and always $G(x) \subset (F \circ G)(x)$.

- 3.4. DEFINITION (CF. [2], [6, p. 18]). Let X be an S-contractible space and $\emptyset \neq Z \subset X$. Then $G: Z \to 2^X$ is generalized condensing if it is upper semicontinuous for compact Q with $G(Q) \subset Q$ and
- (10) for any $Q \subset Z$ with $G(Q) \subset Q$, $\operatorname{card}(Q \setminus \overline{G(Q)}) \leq 1$ implies $\overline{G(Q)}$ is compact,
- (11) $Q \subset Z$, $Q = \overline{\cos} G(Q)$ imply the compactness of Q.
- 3.5. Definition [8]. A space X is \overline{S} -contractible if it is S-contractible and $\overline{\cos} A$ is S-convex for any $A \subset X$.
- 3.6. DEFINITION [8]. A space X is of type \overline{I} (type \overline{II}) provided that it is \overline{S} -contractible and of type I (type II) for S.

The next lemma was proved in [8] (cf. [9]).

LEMMA. If $G: X \to 2^X$ is such a mapping for \overline{S} -contractible space X for which there exists a compact set $B \supset G(B)$, there exists a set $D = \overline{\cos} S G(D) \neq \emptyset$.

For the locally convex spaces it is known that every generalized condensing mapping is quasicompact [6, 1.3.8, p. 18]. We obtain here a similar result.

3.7. THEOREM. Let $G: X \to 2^X$ be a generalized condensing mapping for a type \overline{I} space. Then $F \circ G$ has a fixed point.

PROOF. It is enough to show that G has a compact characteristic set (cf. [2, Theorem 2, p. 129]).

Let $x \in X$ be arbitrary. Assume $B = \overline{B}$ to be a minimal set containing x with the property $G(B) \subset B$. It can be seen that $B \setminus \overline{G(B)} \subset \{x\}$ because $(B \setminus \overline{G(B)}) \cap (X \setminus \{x\})$ is open in B and would be rejected while being nonempty. In view of (10) and lemma there exists a nonempty set $D = \overline{\cos} G(D)$, which is compact (see (11)).

We can easily obtain an analog of Theorem 3.7 for the type \bar{I} spaces.

4. Minimax theorem.

4.1. LEMMA (CF. [5]). Let X be an S-contractible subspace of a space Y. Suppose G: $X \to C(Y)$ satisfies

(12)
$$\begin{cases} x_1, \ldots, x_n \} \subset X \text{ implies for } n \in N \\ S_{x_1}(I, S_{x_2}(I, \ldots, S_{x_{n-1}}(I, x_n) \ldots) \subset \bigcup_{n=1}^{i-1} G(x_i), \end{cases}$$

(13) for at least one
$$x \in X$$
, $G(x)$ is compact.

Then $\bigcap_{x \in X} G(x) \neq \emptyset$.

PROOF (CF. [5]). It is enough to prove that $\bigcap_{i=1}^n G(x_i) \neq \emptyset$ for any $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$ [3, 3.1.1, p. 166]. Let us consider $G_i := g^{-1}(G(x_i))$ (see (2)). It follows from (12) that $\bigcap_{i=1}^n G_i \neq \emptyset$ [3, Theorem 4, p. 510].

REMARK. Instead of (12) we can use the following stronger but more elegant condition: $x_1, \ldots, x_n \in X$ implies $\cos\{x_1, \ldots, x_n\} \subset \bigcup_{i=1}^n G(x_i)$ for any $n \in N$ and $x_i \in X$.

- 4.2. LEMMA (CF. [5]). Let X be an S-contractible space and let $A \subset X \times X$ be compact. Assume
 - (i) $(x, x) \in A$ for $x \in X$,
 - (ii) $\{x: (x, y) \notin A\}$ is S-convex for $y \in X$.

Then there exists $y_0 \in X$ for which $X \times \{y_0\} \subset A$.

PROOF (CF. [5]). Let it be $G(x) := \{ y \in X : (x, y) \in A \}$ for $x \in X$. Suppose there exists some x with

$$S_{x_1}(t_1,\ldots,S_{x_{n-1}}(t_{n-1},x_n)\ldots)=x\notin\bigcup_{i=1}^nG(x_i).$$

It follows from the definition of G that $(x_i, x) \notin A$ for i = 1, ..., n and in view of (ii) $(x, x) \notin A$ which contradicts (i). Lemma 4.1 guarantees the existence of $y_0 \in \bigcap_{x \in X} G(x)$ means $(x, y_0) \in A$, $x \in X$.

4.3. LEMMA (CF. [7]). Let X_1 , X_2 be compact type I spaces for S_1 , S_2 respectively. Assume U, V are closed subsets of $X_1 \times X_2$ and $\emptyset \neq U_x \coloneqq \{y \in X_2 \colon (x,y) \in U\}$ = $\overline{\cos}_2 U_x$, $\emptyset \neq V_y = \{x \in X_1 \colon (x,y) \in V\} = \overline{\cos}_1 V_y$. Then we have $U \cap V \neq \emptyset$.

PROOF (cf. [7]). We will prove for example that $\{V_y\}$ is a compact mapping. Let W_y be a neighborhood of V_y . Suppose that for every neighborhood Z of y there exists a point $(x_z, z) \in V_z \times Z$ that does not belong to $W_y \times Z$. A net with the values (x_z, z) has a cluster point of the form $(x, y) \in V$ [3, 3.1.23, p. 172] which contradicts $(x, y) \notin V_y \times \{y\}$.

The mapping $G: X_1 \times X_2 \to T(X_1 \times X_2)$ with the values $G(x, y) := V_y \times U_x$ (cf. Lemma 2.9) is compact as being upper semicontinuous and has a fixed point (Theorem 2.7). Let it be $(x_0, y_0) \in V_{y_0} \times U_{x_0}$. Then we have $x_0 \in V_{y_0}$, $y_0 \in U_{x_0}$ which means $(x_0, y_0) \in U \cap V$.

4.4. THEOREM (CF. [4], [7]). Let $f: X_1 \times X_2 \to R$ be such a map for the compact type I spaces X_1, X_2 , that for $p, q \in R$

$$U_x^q := \left\{ y \in X_2 : f(x, y) < q \right\} = \overline{\operatorname{co}} \operatorname{S}_2 U_x^q,$$

$$V_y^p := \left\{ x \in X_1 : f(x, y) > p \right\} = \overline{\operatorname{co}} \operatorname{S}_1 V_y^p.$$

Then

$$\max_{x \in X_1} \min_{y \in X_2} f(x, y) = \min_{y \in X_2} \max_{x \in X_1} f(x, y).$$

Proof [7]. Take

$$U = \left\{ z_0 = (x_0, y_0) : f(x_0, y_0) \le \min_{y \in X_2} f(x_0, y) \right\},$$

$$V = \left\{ z_0 : f(x_0, y_0) \ge \max_{x \in X_1} f(x, y_0) \right\}.$$

In view of Lemma 4.3, $U \cap V \neq \emptyset$. So there exists z_0 with

$$f(x_0, y_0) = \min_{y \in X_2} f(x_0, y) = \max_{x \in X_1} f(x, y_0).$$

Hence we obtain

$$\min_{y \in X_2} \max_{x \in X_1} f(x, y) \le \max_{x \in X_1} f(x, y_0) = f(x_0, y_0)$$

$$= \min_{y \in X_2} f(x_0, y) \le \max_{x \in X_1} \min_{y \in X_2} f(x, y).$$

The theorem is proved as obviously we have

$$\min_{y \in X_2} \max_{x \in X_1} f(x, y) > \max_{x \in X_1} \min_{y \in X_2} f(x, y).$$

REFERENCES

- 1. C. Berge, Espaces topologiques, fonctions multivoques, Dunod, Paris, 1966.
- 2. J. Daneš, Generalized concentrative mappings and their fixed points, Comm. Math. Univ. Carolinae 11 (1970), 115-136.
 - 3. R. Engelking, General topology, PWN, Warsaw, 1977.
- 4. K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126.
 - 5. _____, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310.

6. S. Hahn, Zur Theorie nichtlinearer Operatorengleichungen in topologischen Vektorraumen, Thesi	S
Dresden, 1977.	
7. S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math. J. 8 (1941), 457-459.	
8. L. Pasicki, A generalization of Reich's fixed point theorem, Comment. Math. 23 (to appear).	

9. _____, On the measures of noncompactness, Comment. Math. 21 (1979), 203-205.
10. _____, Retracts in metric spaces, Proc. Amer. Math. Soc. 78 (1980), 595-600.
11. _____, Three fixed point theorems, Bull. Acad. Polon. Sci. 28 (1980).

DEPARTMENT OF MATHEMATICS, SCIENCE SCHOOL OF MINING AND METALLURGY, KRAKÓW, POLAND

Current address: Dzierzynskiego 115/44, 30-058 Kraków, Poland