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A FIXED POINT THEORY

FOR MULTI-VALUED MAPPINGS

LECH PASICKI

Abstract. In the present paper several theorems are proved for the multi-valued

mappings that operate on the type I and type II spaces defined in [10]. The

theorems generalize the well-known results for the locally convex spaces.

1. Fundamental theorems. We refer to the Definitions 1-4 from [10].

It is known that every compact self-map of a type I space has a fixed point (see

[11]). Now we will prove in a similar way a theorem for the type II spaces.

1.1. Theorem. Let X be a type II space and let f: X -+ X be a compact map for

which f(X) is finite dimensional. Then f has a fixed point.

Proof. Let us assume dim f(X) < p — 1 and Fix/ = 0.

We can find an open cover <¥ = { Wx}xe-^x) of f(X) for which SZ(I, Wx) n

/" '( Wx) = 0, ^ £ Wx. So we may assume

(i) sZi(i,sZ2{i,...,sZp(i, wx)...)nr\wx) = 0

for X|,..., z. S Wx (see [10, (6)]). There exists an open star, refinement % of order

<p for <¥ [3, 5.1.12, p. 377; 7.2.4, p. 484]. Choose a finite cover {£/},._,.„ of

f{X), x¡ S U; _and W¡ := IVX(¡) d St(U¡, %), i = 1, . . . , n. Let it be X¡ =

X \f~ l(U¡) = X,. Let us define g: I" -+ X as follows:

(2) g(s„ ...,s„) = SXi(tu Sx£t2, ..., S^ ,(/„_„ xn) . . . )

for 27—1 s¡ - 1' ti = Sj/max{s¡: i = 1, ...,«},/'= 1, . . ., n. Write K{ix, . . . , ik)

= { g(5„ . . ., sn): s¡ = 0 for / ^ ipj = 1,. . ., k). Then for f| *_, U^ 0 (implies

k < p) we have

K{iv ...,/,} c S^J,. . . , 5^(7, ^,) . . . )

k k

c * \r\Wt) cl\fl /-'(Vj) = U #j,
/-I 7-1

because x,, . . ., jc,  G H?¡,. Now it can be easily seen that always AT{i'„ . . . , ik) c

The set g   (K{iu . . ., í¿}) contains a A:-simplex and g    (A)) are closed as g is

continuous [3, 3.4.8, p. 210], (cf. [11]). It can be seen now that n"_, g~\Xt) ¥= 0
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[3, Theorem 4, p. 510] and hence n?.1 X, ¥* 0. This latter assertion implies

" n

X*X\Ç\Xt= \Jr\U¡) = X.
1-1 1-1

This contradiction proves Fix/ ^ 0.

In the previous papers of mine coS^l was used in place of coSv4. The next

lemma states that coS A can be treated in another way, similarly as in the linear

topological spaces.

1.2. Lemma. Let X be S-contractible and for 0 ¥= A c X let us write coSA =

H {D = D c X: SX(I, D) c D, x E A c D). Then coS A =coSv4.

Proof. Obviously coS^_c coSA. Let it be D c X and SX(I, D) c D for

x G A. Then we have Sx{t, D) c S^i, D) for any / G 7 and x G A. Hence

SX(I, D ) =  U S,(/, Ö ) C  U   S,(i, D) C   U Sx(/, 7)) c 7)
re/ /e/ «e/

which gives coS A c coS yi for D = coS v4.

For a space A let 2X, C(X), T(X) denote respectively the family of all nonempty,

nonempty and closed, nonempty, closed and S-convex subsets of X.

Suppose X, Y, Z are nonempty and G: X -± 2r is a multi-valued mapping. Then

for 0 ^A c X G(A) := \JxeA G(x) and G(0) = 0 [1, p. 22]. If G,: Y^>2Z,
(G, » G)(x) := G,(G(;c)) [1, p. 24]. If 77: 2y->2z is set-to-set function, (77 ° G)(x)

= H(G(x)) (G(x) E 2y). Let it be in addition (yl n G)(x) := ^ n G(jc) for ^ c

Y.

1.3. Definition (cp. [1, pp. 114, 116]). Let X, Y be spaces. A multi-valued

mapping G: X -» 2¥ is upper semicontinuous if for each neighborhood V of any

G(x) there exists a neighborhood U of x, for which G(U) c F; G is compact if it is

upper semicontinuous and G(X) is compact.

In the sequel the multi-valued mappings will be called mappings.

Let us define for an S'-contractible space X a special set-to-set function as

follows:

(3)

(4)

F(A) = n uecll coS U, where %A for A £ 2X are such families

of neighborhoods as satisfy

if V G ílfl, there exists F, e %A such that for any 0=£C <zVx

there exists K2 G %c, K2 c K.

It can be seen that in particular fyLA can be the family of all neighborhoods of A.

Besides, from (4) follows

(5) 0 ¥= C c A    implies   F(C) c F(A).

For an 5-contractible subspace D = 7) of X Fpp will denote the function

obtained from F by taking %¿ n 7) in place of ^ for ^1 G 2D.

1.4. Theorem. Lei X be a normal type I space for which G: X —>2X is upper

semicontinuous and coS G(X) is compact. Then F ° G has a fixed point.



FIXED POINT THEORY FOR MULTI-VALUED MAPPINGS 783

Proof. Suppose xi(F° G)(x) for x G X. Thus a neighborhood V £ ^ckx)

and such neighborhood U of x can be found, for which U n coS V = 0. It follows

there exists a neighborhood 7» of x with G(P) c K, c F (for A = G(x) F„ V

satisfy (4)). In view of (5) we have iox W := U C\ P, W r\{F ° G)(W) <z U n

F(G(P)). We obtain from (4), U n F(G(7>)) c £/ n F{VX) c t/ n coS_F = 0

Now it is seen there exists an open cover % = { Wx)x^¿¿& ̂ ^ of the set coS G(X)

satisfying

(6) Wx n (F(G( Wx))) =0   for x £ COS G(A).

It follows [3, 5.1.12, p. 377; 5.1.9, p. 375] that there exists a star finite partition of

unity % subordinated to eílí. Let us choose from % a cover T =

{/-1(0, 0},-i,...,„ of coS G(X). Assume x,. G V-, G % St(K„ °V) c ^ G ^ for

i = 1, . . . , n. In view of Tietze's theorem we may think/ maps X into 7 for any

/ = 1, . . ., n.

Let us write

i-2/X*)/>,.(*) = min{ 1,
{

m = (/(*) + />,.(*))/max{/.(x) + p,(x): «' = 1, • • • , «}•

It can be seen that/j,: X ^ I are maps, p¡(x) ¥= 0 for 2"_!/(x) = 0 and/>,(x) = 0

for x G coS G(X). Besides, for any x there exists an index i for which i,(x) = 1.

Now let it be for x G X and v, G G(x,)

(7) h(x) = Syfaix), Sy2(t2(x), ..., SyiiJtn_x(x),yn) ...).

The continuity of h can be proved in a similar way as the continuity of g (see (2)).

From h{X) c coS G(X) it follows that h has a fixed point. Suppose x0 = /i(x0).

There exists a neighborhood Wj containing

D := (œS G(*)) n  U {/"'((0, 1>: /(x0) ^ 0}      (x0 G D).

On the other hand x0 G h(D) c coS G(rV¡) c (F ° G)(W¡) which contradicts (6).

1.5. Theorem. Let coS G: X ^ C(X) be a compact mapping for a normal type I

space X. Then coS ° G has a fixed point.

Proof. Suppose x £ coS G(x) for x S X. Then there exist two neighborhoods

U, F of x and coS G(x) respectively for which U n V = 0. The upper semicon-

tinuity of coS ° G implies the existence of a neighborhood P of x for which

coS G(P) c K. Then for Wx = U n P we have

(8) WinœSG((ri)ci/nœSG(?)ci/nK = 0.

Now we can take (8) in place of (6) and continue the proof of the previous

theorem.

1.6. Theorem. Let G: X —>2X be an upper semicontinuous mapping for a normal

space of type H. 77ie/i F ° G has a fixed point if coS G(X) is compact and finite

dimensional.
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Proof. We repeat the proof of Theorem 1.4. The existence of a fixed point for h

follows from Theorem 1.1.

1.7. Theorem. Let coS °G:i-> C(X) be a compact mapping for a normal type II

space X. Then coS ° G has a fixed point if coS G(X) is finite dimensional.

Proof. Compare the proofs of Theorem 1.5 and Theorem 1.6.

2. Consequences of the fundamental theorems. The next four theorems are the

immediate consequences, as every compact space is normal.

2.1. Theorem. Let G: X —» 2X be an upper semicontinuous mapping for a compact

type I space X. Then F ° G has a fixed point.

2.2. Theorem. Let coS ° G: X —* C(X) be a compact mapping for a compact type I

space X. Then coS ° G has a fixed point.

2.3. Theorem. Let G: X —> 2X be a compact mapping for a compact type II space

X. Then F ° G has a fixed point if coS G(X) is finite dimensional.
_

2.4. Theorem. Let coS »G:i-> C(X) be a compact mapping for a compact type

II space X. Then coS ° G has a fixed point if coS G(X) is finite dimensional.

2.5. Theorem. Let X = X be a normal type I subspace {for S) of an S-contractible

space Y and let G: X —> 2r be such a mapping that X n G and (coS ° (X n G))(A)

are compact. Then F ° G has a fixed point.

Proof. In view of Theorem 1.4, F^x ° (X n G) has a fixed point. We have

(F{2x ° (X n G))(x) c (F ° G)(x) for x G X and therefore F ° G has a fixed

point.

2.6. Theorem. Let X be a compact type I subspace (for S) of an S-contractible

space Y and let G: X -» 2Y be such a mapping that X n G is compact. Then F ° G

has a fixed point.

The analogs of the above two theorems for the type II spaces and for the

function coS ° G can be deduced easily as coS » (X n G) = X n (coS ° (X n

G)).

2.7. Theorem. Let X be a normal type I space and let G: X —> T(X) be a compact

mapping for which coS G(X) is compact. Then G has a fixed point.

Proof. The theorem is a consequence of Theorem 1.5 as coS G(x) = G(x) for

x G X.

Theorem 2.7 is a generalization of Ky Fan's theorem for mappings in the locally

convex spaces [4, Theorem 1].

2.8. Definition. A space X is of type 0 (locally type 0), if it is S-contractible

(locally S-contractible) for S satisfying

for any A c X and any neighborhood V of coS A there exists a

neighborhood U of A for which coS U c V.
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It can be seen that every type 0 space is of type I.

2.9. Lemma. Let {Xs}sST be a family of type 0 spaces. Then IIieT A^ is of type 0

(similarly for the locally type 0 spaces).

Proof. Let it be x = EsST xs, y = IIjer ys and / G 7. Then

Sx(t,y) := njer S^(t,ys) is the needed homotopy (Sf satisfy (9) for s G T) be-

cause the projection is continuous [3, 2.3.6, p. 108] and the diagonal

seT Vier       /

is a homeomorphism. The other conditions can be easily checked.

2.10. Lemma. For an arbitrary set A in a regular type 0 space we have coS A =

PA := n {coS U: A c U = Int U).

Proof. Obviously coS A c PA. Suppose x G PA and x E coS A. There exists a

neighborhood V of coS A for which x £ V. We can find a neighborhood U ol A

with coS i/cK, which gives a contradiction.

2.11. Corollary. For an arbitrary upper semicontinuous mapping G: X -»2a',

coS ° G ù upper semicontinuous, if X is a regular type 0 space.

2.12. Theorem. Let G: X —>2X be a compact mapping for a normal type 0 space.

Then coS ° G has a fixed point if coS G(^) ¿y compact.

Proof. This fact follows from Theorem 1.5 and 2.11.

2.13. Theorem. Let X be a compact type 0 space. Then for any compact G:

X -» 2X, coS o G has a fixed point.

We can easily formulate the type 0 versions of Theorems 2.5, 2.6.

Let us write for the nonempty subsets A, D of a metric space (A/, d) and x G M,

r > 0

rf(x,y4) = 'mi{d(x,y):y & A),   d(A, D) = ini{d(x, D): x G A),

B(A, r) = {x G M: ¿(x, ^) < r),    7>r(7>) = ¿ n B(D, d(A, D) + r)

and

p(d) = n pad).
r>0

2.14. Theorem. T^ef A be a compact set of type I in a metric space (M, d). Then

E ° G := n ,>0 coS (TV » G): /í -» C(^) has a fixed point if G: A -> C(M) w

Proof. It is seen that P ° G: A ^> C(A) and thus coS P(G(A)) is compact and

{7>r(G(x))}r>0 is a family of neighborhoods of 7XG(x)) for which (4) holds with the

suitable substitutions. In view of Theorem 1.4 it is enough to show that P ° G is

upper semicontinuous.

There exist points v G G(x), z Œ A\ B((P ° G)(x), r) that give the distance

between sets. Let us write ar = d( v, z) — d(A, G(x)). Obviously ar > 0 and hence
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P(B(G(x), ar/2)) c B((P » G)(x), r). Now it is seen that P ° G is upper semicon-

tinuous.

If G: A -> M is a map, coS T^Gix)) = /l(G(x), /•) and it is seen that Theorem

2.14 generalizes Theorem 4 from [10].

We have mentioned only two theorems for the type II spaces in the present

section, but all the other theorems for the type I spaces in this paper can be easily

transferred to the type II case.

3. Generalized condensing and quasicompact mappings.

3.1. Definition (cf. [6, pp. 12, 13]). Let X be a space and for 0 =^= Z c X let G:

Z -> 2X be a mapping. Then an S-contractible set D = D c X is characteristic of

G if_Z n D=£0, G(Z n D) c D and coS G(Z n D) is compact (in the case

G =coS ° 77 we assume only the compactness of G(Z n D)).

Let I be an S-contractible space and W = coS W c X, K = coS K c X; a

mapping G: W n 7C -» 2* is quasicompact if it has a characteristic set on which G

is upper semicontinuous.

3.2. Theorem. Let X be a normal type I space for which coS »6:i^ C(X) is

quasicompact. Then coS ° G nay a fixed point.

Proof. See Theorem 1.5.

3.3. Theorem. Let X be a normal type I space for which G: X —» 2X is quasicom-

pact. Then F ° G has a fixed point.
m. j Mr

Proof. Let D be a set characteristic of G ¥= coS ° 77. Then from Theorem 1.4

follows the existence of x0 G (T7^ ° G)(x0) c (F » G)(x0). If G =coS ° 77, G itself

has a fixed point (Theorem 3.2) and always G(x) c (F ° G)(x).

3.4. Definition (cf. [2], [6, p. 18]). Let X be an S-contractible space and

0 ¥= Z c X. Then G: Z —» 2X is generalized condensing if it is upper semicontinu-

ous for compact Q with G(Q) c Q and

for any  Q c Z with  G(ß) c ß,  card(ö \ G(£?)) < 1  implies

(10) G(Q) is compact,

—
(11) Q C Z, Q =coS G(Q) imply the compactness of Q.

3.5. Definition [8]. A space X is S-contractible if it is S-contractible and coS A

is S-convex for any A c X.

3.6. Definition [8]. A space X is of type Ï (type II) provided that it is

S-contractible and of type I (type II) for S.

The next lemma was proved in [8] (cf. [9]).

Lemma. If G: X —* 2X is such a mapping for S-contractible space X for which there

exists a compact set B Z) G(B), there exists a set D =coS D =coS G(£>) =£ 0.

For the locally convex spaces it is known that every generalized condensing

mapping is quasicompact [6, 1.3.8, p. 18]. We obtain here a similar result.
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3.7. Theorem. Let G: X —» 2X be a generalized condensing mapping for a type I

space. Then F ° G has a fixed point.

Proof. It is enough to show that G has a compact characteristic set (cf. [2,

Theorem 2, p. 129]).

Let xelbe arbitrary. Assume B = B to be a minimal set containing x with

the property G(B) c B. It can be seen that B \ G(B) c {x} because (B \ G(B)) n

(X \ {x}) is open in B and would be rejected while being nonempty. In view of

(10) and lemma there exists a nonempty set D =coS G(D), which is compact (see

(11))-
We can easily obtain an analog of Theorem 3.7 for the type I spaces.

4. Minimax theorem.

4.1. Lemma (cf. [5]). Let X be an S-contractible subspace of a space Y. Suppose G:

X^> C(Y) satisfies

(x„ . . . , x„} c X implies for n £ N
(12)

sXt(i,sX2(i,...,S^JI,x„)...)c uIT'<?(*,)>

(13) for at least one x G X, G(x) is compact.

Then nxeA-G(x)^0.

Proof (cf. [5]). It is enough to prove that f"l "_ i G(x,) =£ 0 for any n E. N and

*„..., xH € X [3, 3.1.1, p. 166]. Let us consider G, := g_1(G(x,)) (see (2)). It

follows from (12) that n".,G,.^0 [3, Theorem 4, p. 510].

Remark. Instead of (12) we can use the following stronger but more elegant

condition: x„ . . . , x„ G X implies coS{x„ . . . , x„} c U"_, G(x,) for any n E. N

and x, G X.

4.2. Lemma (cf. [5]). Let X be an S-contractible space and let A G X X X be

compact. Assume

(i) (x, x) G A for x G X,

(ii) {x: (x, v) E A] is S-convex for y G X.

Then there exists y0 G X for which X X {y0} c A.

Proof (cf. [5]). Let it be G(x) := { v G X: (x,y) G A) for x G X. Suppose there

exists some x with

n

S*,('l> • • • ' V,('»-l' Xn) ■ ■ ■ )  » * £   U   G(X,).
»-1

It follows from the definition of G that (x,, x) E A for i = 1, .. ., n and in view of

(ii) (x, x) £ A which contradicts (i). Lemma 4.1 guarantees the existence of

•Vo £ f\eA- G(x) means (x, v„) G A, x G A'.

4.3. Lemma (cf. [7]). Leí Xv X2 be compact type I spaces for Sx, S2 respectively.

Assume U, V are closed subsets of Xx X X2 and 0 ¥= Ux := { v G X2: (x,y) £ U)

= coS2 Í/,, 0^Vy = {xEXi: (x, v) G K} =coS, Vy. Then we have Un V =£ 0.
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Proof (cf. [7]). We will prove for example that { Vy) is a compact mapping. Let

Wy be a neighborhood of Vy. Suppose that for every neighborhood Z of v there

exists a point (xz, z) G Vz X Z that does not belong to Wy X Z. A net with the

values (xz, z) has a cluster point of the form (x, v) G F [3, 3.1.23, p. 172] which

contradicts (x, v) £ Vy X {>>}.

The mapping G:XX X Jf2 -> T^, X Xj) with the values G(x, v) := ^ X (/, (cf.

Lemma 2.9) is compact as being upper semicontinuous and has a fixed point

(Theorem 2.7). Let it be (x0, v0) G V X Ux<¡. Then we have x0 £ Vy</ y0 £ UXo

which means (x0, y0) G U n V.

4.4. Theorem (cf. [4], [7]). Let f: Xx X X2 —» R be such a map for the compact

type I spaces Xx, X2, that for p, q G 7?

U< := { v G X2:f(x,y) <q} = œS2 Wx,

V> := {x G Xx:f(x,y) >p) = œSx V>y.

Then

max   min fix, y) = min   max fix, y).
x<=x, yex2JK  "     yex2  xex/y    *'

Proof [7], Take

F = íz0:/(-Xo»>o) > max /fo-Vo)}-

In view of Lemma 4.3, U n F =£ 0. So there exists z0 with

/(^O'^o) = mij? f(xo>y) = max /(x, v0).
)"€a2 XEA|

Hence we obtain

min   max fix, y) < max fix, v0) =/(xo, y0)
^ex2   xeX[ jceA"i

= min /(x0, v) < max   min fix, y).
yeX2 x£X¡  yex2

The theorem is proved as obviously we have

min   max fix,y) > max   min fix, y).
yex2  xex, xex, yex2
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