AN INEQUALITY CONCERNING THREE FUNDAMENTAL DIMENSIONS OF PARACOMPACT σ-SPACES

SHINPEL OKA

ABSTRACT. It is shown that Ind $X < \dim X + \operatorname{ind} X$ for any nonempty paracompact σ -space.

In this paper a map is a continuous map and a space is a Hausdorff topological space. The symbols dim, Ind and ind usually denote covering dimension, large inductive dimension and small inductive dimension, respectively. As is well known, ind $X \leq \text{Ind } X$ and dim $X \leq \text{Ind } X$ for any normal space X. A space is called a σ -space if it admits a σ -locally finite net (cf. [7]). The aim of this paper is to prove the following inequality.

THEOREM 1. Let X be a nonempty paracompact σ -space. Then Ind $X \leq \dim X + \operatorname{ind} X$.

COROLLARY 2. Let X be a paracompact σ -space with ind $X \leq 0$. Then dim X = Ind X.

Our arguments are based on Leibo's ideas of constructing a special kind of map onto metric spaces and making use of Pasynkov's factorization theorem (see [3]).

The following lemma is implicit in [3], and is generalized in [5] to the case where $\mathfrak U$ is σ -discrete and in [6] to the case where $\mathfrak U$ is σ -locally finite.

LEMMA 3. Let X be a submetrizable space (i.e. X admits a weaker metric topology), and let \mathcal{U} be a countable collection of cozero sets of X. Then there exist a metric space M and a one-to-one map f from X onto M such that f(U) is an open set of M for every $U \in \mathcal{U}$.

The following lemma is well known (see [2, Lemma 2.3.16]).

LEMMA 4. Let X be a space and let C, K be disjoint closed sets of X. Let \mathcal{U} be a countable open cover of X such that, for each $U \in \mathcal{U}$, either $\overline{U} \cap C = \emptyset$ or $\overline{U} \cap K = \emptyset$. Then C and K are separated by a closed set S such that $S \subset \bigcup \{Bd\ U: U \in \mathcal{U}\}$.

Let X be a paracompact σ -space. Let $\mathcal{F} = \bigcup_{i=1}^{\infty} \mathcal{F}_i$ and $\mathcal{V} = \bigcup_{i=1}^{\infty} \mathcal{V}_i$ be collections of subsets of X satisfying the following conditions:

(1) \mathcal{F} consists of closed sets of X, and \mathcal{V} consists of open sets of X;

Received by the editors February 16, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54F45, 54E18.

Key words and phrases. σ-space, covering dimension, large inductive dimension, small inductive dimension.

- (2) \mathcal{F} is a net of X;
- (3) for each i, \mathcal{V}_i is written as $\mathcal{V}_i = \{V_i(F): F \in \mathcal{F}_i\}$, and $F \subset V_i(F)$ for each $F \in \mathcal{F}_i$;
 - (4) \mathcal{N}_i is discrete in X for each i.

Every paracompact σ -space admits such collections. For each i, put

$$F_i = \bigcup \{F: F \in \mathcal{F}_i\} \text{ and } V_i = \bigcup \{V: V \in \mathcal{V}_i\}.$$

LEMMA 5. Let X be a nonempty paracompact σ -space and let \mathcal{F} , \mathcal{F} be collections of subsets of X satisfying (1)-(4) above. Let Y be a totally normal space and let $f: X \to Y$ be a one-to-one onto map such that, for each i, $f(F_i)$ is a closed set and $f(V_i)$ is an open set of Y. Then Ind $X \leq \text{Ind } Y + \text{ind } X$.

PROOF. The proof is by induction on Ind Y + ind X. Suppose Ind Y + ind X = 0. Let C and K be disjoint closed sets of X. For each i, put $\mathfrak{F}_i(C) = \{F \in \mathfrak{F}_i : F \subset W \text{ for some clopen set } W \text{ with } W \cap C = \emptyset\}$. For each $F \in \mathfrak{F}_i(C)$, fix such a W and denote it by $W_i(F, C)$. Since ind X = 0, it follows from (2) that $\bigcup_{i=1}^{\infty} \mathfrak{F}_i(C)$ covers X - C. Since Ind Y = 0, it follows from assumption that, for each i, there exists a clopen set O_i of Y such that $f(F_i) \subset O_i \subset f(V_i)$. By (4), $V_i(F) \cap f^{-1}(O_i)$ is a clopen set for each $F \in \mathfrak{F}_i$. Now put

$$H_i(C) = \bigcup \{W_i(F,C) \cap V_i(F) \cap f^{-1}(O_i) : F \in \mathcal{F}_i(C)\}.$$

Then, by (4) again, $H_i(C)$ is a clopen set of X. Clearly $X - C = \bigcup_{i=1}^{\infty} H_i(C)$. Similarly we can find clopen sets $H_i(K)$, $i = 1, 2, \ldots$, such that $X - K = \bigcup_{i=1}^{\infty} H_i(K)$. Hence, by Lemma 4, C and K are separated by the empty set and, therefore, Ind X = 0.

Now suppose that the lemma is valid when Ind $Y + \operatorname{ind} X \leq n - 1$, and consider the case when Ind $Y + \operatorname{ind} X = n$. Let A and B be disjoint closed sets of X. For each i, put $\mathscr{T}_i(A) = \{F \in \mathscr{T}_i : F \subset W \text{ for some open set } W \text{ with } \overline{W} \cap A = \emptyset$ and ind Bd $W \leq \operatorname{ind} X - 1\}$. For each $F \in \mathscr{T}_i(A)$, fix such a W and denote it by $W_i(F, A)$. By (2), $\bigcup_{i=1}^{\infty} \mathscr{T}_i(A)$ covers X - A. Note that for any $X' \subset X$, $f|X' : X' \to f(X')$ satisfies the assumption of Lemma 5 with respect to $\mathscr{T}|X'$ and $\mathscr{V}|X'$. Since

$$\operatorname{Ind} f(\operatorname{Bd} W_i(F,A)) + \operatorname{ind} \operatorname{Bd} W_i(F,A) \leq \operatorname{Ind} Y + (\operatorname{ind} X - 1) = n - 1,$$

it follows from the induction hypothesis that Ind Bd $W_i(F,A) \le n-1$. On the other hand, by assumption, we can find an open set O_i of Y such that $f(F_i) \subset O_i \subset \overline{O_i} \subset f(V_i)$ and Ind Bd $O_i \le$ Ind Y-1. Since Ind Bd $O_i +$ ind $f^{-1}(Bd O_i) \le$ Ind Y-1+ ind X=n-1, it follows from the induction hypothesis that Ind Bd $f^{-1}(O_i) \le$ Ind $f^{-1}(Bd O_i) \le n-1$. By (4), $Bd(V_i(F) \cap f^{-1}(O_i)) \subset Bd f^{-1}(O_i)$. Now put

$$H_i(A) = \bigcup \{ W_i(F, A) \cap V_i(F) \cap f^{-1}(O_i) : F \in \mathcal{F}_i(A) \}.$$

Since

Ind Bd
$$(W_i(F, A) \cap V_i(F) \cap f^{-1}(O_i))$$

 $\leq \max\{\text{Ind Bd } W_i(F, A), \text{ Ind Bd}(V_i(F) \cap f^{-1}(O_i))\} \leq n - 1,$

792 SHINPEI OKA

it follows from (4) that Ind Bd $H_i(A) \le n-1$. Clearly $X-A=\bigcup_{i=1}^{\infty}H_i(A)$ and $A\cap \operatorname{Cl} H_i(A)=\emptyset$ for each *i*. Similarly there exist open sets $H_i(B)$, $i=1,2,\ldots$, such that Ind Bd $H_i(B) \le n-1$, $X-B=\bigcup_{i=1}^{\infty}H_i(B)$ and $B\cap \operatorname{Cl} H_i(B)=\emptyset$ for each *i*. Then, applying Lemma 4, we have a closed set S separating A and B such that $S\subset (\bigcup_{i=1}^{\infty}\operatorname{Bd} H_i(A))\cup (\bigcup_{i=1}^{\infty}\operatorname{Bd} H_i(B))$. By the countable sum theorem for Ind, we have Ind $S\le n-1$. Thus Ind $X\le n$, which completes the proof of Lemma 5.

PROOF OF THEOREM 1. Let X be a nonempty paracompact σ -space, and let $\mathfrak{T} = \bigcup_{i=1}^{\infty} \mathfrak{T}_i$ and $\mathfrak{T} = \bigcup_{i=1}^{\infty} \mathfrak{T}_i$ be collections of subsets of X satisfying (1)–(4) above. By [1, Lemma 8.2] and [7, Theorem 4.6], X is submetrizable. Thus Lemma 3 applies to yield a metric space L and a one-to-one onto map $g: X \to L$ such that, for each i, $g(F_i)$ is a closed set and $g(V_i)$ is an open set of L. By Pasynkov's factorization theorem [8, Theorem 29], there exist a metric space M and onto maps $f: X \to M$ and $h: M \to L$ such that $g = h \circ f$ and $\dim M \leq \dim X$. Clearly f is one-to-one, $f(F_i)$ is a closed set of M for each i, and $f(V_i)$ is an open set of M for each i. Hence, by Lemma 5,

Ind $X \le \text{Ind } M + \text{ind } X = \dim M + \text{ind } X \le \dim X + \text{ind } X$. This completes the proof of Theorem 1.

In the proof of Lemma 5, the following theorem is essentially proved.

THEOREM 6. A paracompact σ -space with ind $X \leq 0$ admits a special family in the sense of Leibo [4].

REMARK. The inequality in Theorem 1 does not hold even if X is compact. In fact, Filippov [9] obtained compact spaces R_i , $i = 1, 2, 3, \ldots$, such that dim $R_i = 1$, ind $R_i = i$ and Ind $R_i = 2i - 1$. Corollary 2 is also restricted in generalization by Nagami's example [10] of a normal space Z with ind Z = 0, dim Z = 1, Ind Z = 2.

REFERENCES

- 1. C. J. R. Borges, On stratifiable spaces, Facific J. Math. 17 (1966), 1-16.
- 2. R. Engelking, Dimension theory, North-Holland, Amsterdam, 1978.
- 3. I. M. Leibo, On the equality of dimensions for closed images of metric spaces, Soviet Math. Dokl. 15 (1974), 835-839.
 - 4. _____, On closed images of metric spaces, Soviet Math. Dokl. 16 (1975), 1292-1295.
 - 5. S. Oka, Dimension of finite unions of metric spaces, Math. Japon. 24 (1979), 351-362.
 - 6. _____, A generalization of free L-spaces, Tsukuba J. Math. (to appear).
- 7. A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1967), 236-254.
- 8. B. A. Pasynkov, On the spectral decomposition of topological spaces, Amer. Math. Soc. Transl. (2) 73 (1966), 83-134.
- 9. V. V. Filippov, On bicompacta with noncoinciding inductive dimensions, Soviet Math. Dokl. 11 (1970), 635-638.
- 10. K. Nagami, A normal space Z with ind Z = 0, dim Z = 1, Ind Z = 2, J. Math. Soc. Japan 18 (1966), 158-165.

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, ROKKAKUBASHI, KANAGAWA-KU, YOKOHAMA, 221 JAPAN