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STRONG COLLECnONWISE NORMALITY

AND M. E. RUDINS DOWKER SPACE

K. P. HART

Abstract. We investigate the relationship between strong collectionwise normality

and some other separation properties. The conclusion is that in general there is

none. In addition some properties of M. E. Rudin's Dowker space are found.

1. Definitions and preliminaries.

1.1. A space Y is called strongly collectionwise normal (s.c.n.) [8] iff the family of

all neighbourhoods of the diagonal AY in Y X Y forms a uniformity.

It is known that:

Paracompact implies s.c.n. but not conversely [5];

s.c.n. implies collectionwise normal but not conversely [2].

Furthermore note that a space Y is s.c.n. iff for all open (/dA7 there is an

open V d Ar s.t. V ° V c U.

1.2. Let k > 2 be a cardinal. A space Y is called almost-K-fuliy normal (K-fully

normal) [6] iff every open cover % of Y has an open refinement T with the

following property: given y G Y and A c St(.y, °T) with \A\ < k there is a U G %

s.t. A C.U (given Tcli with |T| < k and nTi¿0 there is a U G % s.t.

UTc £/)•
It is known [6] that

paracompact = fully normal => K-fully normal => almost-K-fully normal (among

Hausdorff spaces);

if À > k then (almost-) X-fully normal implies (almost-) K-fully normal;

for k > w, K-fully normal need not imply almost-k+-fully normal;

almost-2-fully normal is equivalent to s.c.n. [2].

1.3. A space X is called monotonically normal iff for every open U c X and

x G U there is an open Ux 3 x s.t.

UxnVy¥=0=*xGV   or   v G U.

Monotone normality was introduced in [4]; the above definition is in fact a

characterization from [1]. It is known [4] that

monotone normality is a hereditary property;

monotonically normal implies collectionwise normal but not conversely.
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1.4. Consider the following space Y. Y — to, X (<o, + 1) with each point of

to, X to, made isolated. Cohen [2] observed that this space, which he attributed to

R. H. Bing, is collectionwise normal but not s.c.n.

Eric van Douwen [9] showed that Y is monotonically normal (put U,a ̂  =

{(a, /?)} if ß < to, and i/(o w > = any "rectangle" (y, a] X (S, co,] contained in

t/-see 1.3) and countably paracompact (the derived set to, X {<o,} is countably

compact). Hence

a monotonically normal space need not be s.c.n.;

a strongly normal (= collectionwise normal and countably paracompact) space

need not be s.c.n.

Furthermore (ux + 1) X (ux + 1) is compact but not monotonically normal

(since it is not hereditarily normal); consequently a space which is (almost-) K-fully

normal for all k > 2 need not be monotonically normal.

2. M. E. Rudin's Dowker space is s.c.n. In this section we show that an s.c.n.

space need not be strongly normal. An example showing this must necessarily be a

Dowker space (i.e. a space which is normal but not countably paracompact). We

shall show that M. E. Rudin's Dowker space [7] is s.c.n.; it is in fact almost-A>fully

normal for all finite k.

2.1. Description of the Dowker space X. We shall use the same notation as in [7].

We put

F= {/:N-+cojV «:/(») < <o„} =  fi (<o„ + 1),

X = {/ G F|3i G N: V n <o0 < cl(fin)) < to,},

A"={/GF|V«:to0<cf(/(«))}.

Furthermore we define for /, g G F

f < g iff V n:f(n) < g(n),   f < g iff V n:f(n) < g(n).

We topologize X' and hence X using the sets of the form U*¿ = {h G X'\f < h

< g), where/ < g and/ and g run through F, as a base for the open sets.

It is shown in [7] that

X is not countably paracompact;

X is collectionwise normal;

A" is ultraparacompact (= paracompact and strongly zero-dimensional);

X is C-embedded in A", so A" = vX, the Hewitt-realcompactification of X.

2.2. X is s.c.n. It is easy to check the following equality:

00

Ufr-x'n II(/(0> *(')]•

From this it follows that X' (and hence X) is a subspace of F, if we consider F to

be the box product of the ordinal spaces to, + 1, <o2 + 1, . . .. Indeed, basic open

sets of F intersect in basic open sets of A" and all basic open sets of A" are

obtained in this way.
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Define ip:Fx F-»Fas follows:

<p(f,g)(2i- 1) =/(/),
V(/, e?)(2i) - «(0       for ail».

(i) <p[F X F] = njli[0, k,] where Vi: k2,_, = k2/ = a,.

C : <*,(/, g)(2i - 1) = /(/) < to,. = k2,._„ <p(/, g)(2/) = g(/) < co,. = k2i. for ail t, f

and g.

D : Take fin the product. Define/, and/2 by/,(/) = f(2i — \),f2(i) = f(2i) Vi.

Then

/,(/) < k2í_, = co,    Vi,       /2(i) < k2, = co,    Vi,

so (/1./2) G F X Fand obviously <p(fx,fi) = /

Consequently cp[F X F] is clopen in F.

(ii) <p is obviously injective.

(iii) cp[A" X A"] = A" n <p[F X F].

C : If co0 < cf(/(n)), cf( g(n)), Vn, then certainly co0 < cf(tp(/, g)(n)), Vn.

D : If/ G A" n <p[F X F] then obviously/,, f2 G A" so/ G <p[A" X A"],

(iv) tp[A- X X] = X n <p[F X F].

C :    If   Vn co0 < cf(/(n)) < co,   and   co0 < cf(g(n)) < co,   then   Vn co0 <

cf(<p(/, g)(n)) < co,+>-

D : If Vn co0 < cf(/(n)) < co, then the same holds for/, and/2.

(v) The restriction tp|(A" X A"), which we also denote by <p, is continuous, for

obviously

(vi) <p is also open since

"P[ tjj, X Í//,,*] = ^/./»^(g,*)       V/, g, n, /c.

From (i)-(vi) we see that

<p[X X X] and <p[A" X A"] are homeomorphic to X X X and A" X A" respec-

tively;

cp[A' X X] and <p[A" X A"] are clopen subspaces of X and A" respectively.

(vii) From the above we can now conclude that A' X A" is normal and C-

embedded in A" X A".

(viii) X is s.c.n.

Let U D AX be open; by (vü), (X X X) \ {7 and A~X= AX' (closures in A" X

A") are disjoint. So U' = (A" X A") \ ((A1 X X)\U) is an open set containing

AA". Since A" is ultraparacompact we can find an open V D AA" such that

v = v ° v = (vyx c u.

Now put V = (X X X) n K'; then we have AX cz V = V ° V c U.
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3. Additional properties of X and A". We shall exhibit some more properties of X

and A". We start with a lemma.

3.1. Lemma (Generalizing the Schroeder-Bernstein Theorem). Let Y be a

P-space (i.e. Gs-sets in Y are open) and suppose i: Y'—* Z and j: Z —» Y are

embeddings such that i[ Y] andj[Z] are clopen in Z and Y respectively. Then Y and Z

are homeomorphic. Moreover, if Y' c Y and Z' c Z satisfy i[ Y'] = i[ Y] n Z' and

j[Z'] = j[Z] n Y', then the homeomorphism can be chosen to map Y' onto Z'.

Proof. Any standard proof of the S.-B. Theorem will do. For example: put

C = {C c Y\C is clopen} and define H: ß -» 6 by H(C) = Y \j[Z \ i[C]]. Let

Y0 = Y and Yn + X = H(Yn) (n G co0), and Ya = Dneu Yn.

Yu G 6 since y is a P-space.

h(yj = H(nneu y„) = n„eu H(Yn) = nneu y„+x = y„.

Definen: r^Zby

, _ j ¡(y)      üy e Yu>

\j~\y)   if v « y .

It is easy to see that n is a homeomorphism of Y onto Z. Furthermore,

h[ r] = «[ y n yM] ur[ r \ yj[ ç «'[r] u/*-[ r] c z'

and

h[Y\Y'] = i[Yu\r]uj-[Y\(Y'uY0)]

ci[y]\z'u/*-[y\y] cz\z',

so h[Y'] = Z'.

3.2. Corollary. A" X A" an«/ A" are homeomorphic and the homeomorphism can

be chosen to map X X X onto X.

Proof. A" and A" X A" are P-spaces.

tp[X X X] is clopen in A" and <p[A' X X] = <p[X' X A"] n X.

Define i: A" -> A" X A" by i(/) = (/, «,), where <o, is the point of A" having all

coordinates equal to co,.

Since <o, is isolated in A", i[A"] is clopen in A" X A". It is easy to check that

i[X] = i[A"] c\ X X X. Application of 3.1 yields the desired homeomorphism.

3.3. Some consequences. 1. It follows by induction that (X')" and A" are

homeomorphic for all n and that we can, in each case, choose the homeomorphism

in such a way that it carries X" onto X.

2. From 1 and 3.2 it follows that X" is always C-embedded in (A")" and hence

for all n we have v(X") = (vX)", even though X" is not pseudocompact.

3. Also from 1 and 3.2 it follows that all finite powers of X are s.c.n. Using a

lemma due to Corson [3] we then see that X is almost-/c-fully normal for all finite

k. But X is not almost-co0-fully normal, since Mansfield [6] proved that such spaces

must be countably paracompact.
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3.4. Remark. Even though X and X' are homeomorphic to their own squares,

neither space even contains a copy of its coth power. This follows from the facts

that X and A" are both P-spaces and that no infinite product of nondegenerate

spaces can be a P-space.

4. A remark and an acknowledgement.

4.1. In his book General topology, A. Császár uses the name divisible for s.cn.

spaces which, in the light of the result of §2, seems to be more appropriate.

4.2. The author would like to thank the referee for suggesting some improve-

ments and in particular the short proof of Lemma 3.1.
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