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WHICH CONNECTED METRIC SPACES ARE COMPACT?

GERALD BEER

Abstract. A metric space X is called chainable if for each e > 0 each two points

in X can be joined by an e-chain. X is called uniformly chainable if for each e there

exists an integer n such that each two points can be joined by an e-chain of length

at most n.

Theorem. A chainable metric space X is a continuum if and only if X is uniformly

chainable and there exists ¿5 > 0 such that each closed S-ball is compact.

Using Ramsey's Theorem a sequential characterization of uniformly chainable

metric spaces is obtained, paralleling the one for totally bounded spaces.

Let (X, d) be a metric space. If p and q are points of A' an e-chain of length n

from p to q is a finite sequence a0, ax, a2, . . . , a„ in X such that a0 = p, an = q,

and d(aj_ „ af) < e for/ = 1, . . . , n. We call X e-chainable if each two points in X

can be joined by an e-chain, and X is called chainable if X is e-chainable for each

positive e. The chainable spaces include the connected spaces. Moreover, chainabil-

ity characterizes the connected spaces among the compact ones [2]. The main

purpose of this note is to characterize the compact spaces among the connected

spaces (more generally the chainable ones). Chainable spaces that are compact

satisfy two conditions, one stronger than completeness and the other weaker than

total boundedness, two conditions used frequently to characterize compactness

when connectivity is irrelevant.

Before proceeding we set forth some notation. Let A1 be a chainable metric space.

If a e X then Be[a] will denote the closed e-ball with center a. If A c X,

UX<SA Be[x] will be designated by Be[A). Inductively construct the set B"[A] for

each n G Z+ as follows: B¡[A] = Be[A] and for each n > 2 set Be"[A] =

B,[B"~X[A]]. The following should be observed:

(l)B"\A] c Bn+X[A]

(2)í;Wc¿|4 '
(3) Ii?-, Ben[A] = X if A ^0.
Finally if e > 0 define <f>£: X xl^{0, 1, 2, 3, . . . } by <j>e(x,y) = the length of

the shortest e-chain from x to.y.

Definition. Let Ibea chainable metric space. X is called uniformly e-chainable

if there exists a positive integer n such that each two points in X can be joined by

an e-chain of length at most n. X is called uniformly chainable if it is uniformly

e-chainable for all positive e.

Definition. Let X be a metric space. X is called uniformly locally compact if

there exists e > 0 for which each closed e-ball is compact.
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Lemma. Let X be a chainable metric space. If X is totally bounded then X is

uniformly chainable. If X is uniformly locally compact then X is complete.

Proof. Suppose e is a positive number. If X is totally bounded, then we can find

(x,, . . . , x„) in X such that X = U "= i Be[xt]. It follows that each two points of X

can be joined by an e-chain of length at most 2 + max{<i>£(x„ xf): 1 < i,j < n).

The proof of the second assertion is easier still and is left to the reader.

Let l2 denote the collection of square summable real sequences made a Hilbert

space in the usual way. The unit ball in this space is clearly uniformly chainable

but is not totally bounded. In the same space there exists a subspace that fails to be

uniformly locally compact which is not only complete but is also locally compact,

sigma compact, connected, and uniformly chainable. Let {e¡: i G Z + ) be the

standard orthonormal basis for l2. For each i in Z+ define sets Z, and T¡ as

follows:

Z,. = {<?„: n = 2'(2* - 1) and k G Z + },

T¡ = {ae„ + (1 - a)e2i_x: en G Z, and 2-'/V2  < a < l).

Let L denote the infinite polygonal path joining ex to e2, then e2 to e3, etc. Finally

let X = L u U ,°L i Tt. The subspace X is connected, for it consists of the con-

nected set L and a collection of line segments each of which meets L. Since A' is a

closed subspace of a Hilbert space it is complete. Moreover, X is locally Euclidean;

in fact, at each point x in X we can find a ball with center x whose intersection

with X is either one, two, or three line segments. Thus, X is locally compact.

However, X is not uniformly locally compact because for each i the set B2-\e2i_x] is

not compact. To see that X is uniformly chainable let e > 0 be arbitrary. Choose i

such that 2"' < e. Let y and w be two arbitrary points in X. There is a polygonal

path in X leading from v (resp. w) to a pointy* (resp. w*) in Z, that consists of at

most 2' + 1 sides each of length at most V2 . Now y* can be joined to w* by an

e-chain via e2l_„ i.e., in T¡. It follows that v can be joined to w by an e-chain in X

whose length depends on i and not on the choice of v and w.

We are now ready for the main result.

Theorem 1. Let (X, d) be a chainable metric space. Then X is compact if and only

if X is uniformly locally compact and uniformly chainable.

Proof. Since closed balls are closed sets and compactness implies total bounded-

ness, the necessity of the conditions is immediate. To show that these conditions

are sufficient choose 5 > 0 such that all closed balls of radius 8 are compact. Let

e < 8 be fixed. We first show that if C is a closed set, then Be[C] is closed. To this

end let {x„} be a sequence in Be[C] convergent to a point x. For each n choose cn

in C satisfying d(cn, xn) < e. Eventually {c„} must be in Bs[x] so that a subse-

quence of {c„} must be convergent to some point c in C. Clearly, d(c, x) < e and

therefore Be[C] is closed. Next let A be compact. We claim that Be[A] is compact.

Since A is compact there is a finite subset F of A such that A c BS_C[F]. It follows

that Be[A] c Be[Bs_e[F]] c BS[F]. Thus Bt[A] is a closed subset of a compact set

and is thus itself compact. Finally let p be an arbitrary point of X. From the last



CONNECTED METRIC SPACES 809

arguement it follows by induction that each set B"[{p}] is compact. By hypothesis

there exists an integer n such that each point in X can be connected to p by an

e-chain of length at most n. But this means that X = B"[{p}]. Hence, X is compact

(and connected).

Counterexamples are in order. The intricate subspace of l2 described earlier

shows that "uniformly locally compact" cannot be replaced by "complete" and

"locally compact" in the statement of Theorem 1. A much simpler example shows

that "uniformly chainable" cannot be replaced by "connected" and "bounded":

remetrize the real line by defining d(x,y) = min{l, |x — y\). We also mention that

the terms "uniformly locally compact" and "uniformly chainable" were not chosen

idly, for they immediately generalize to Hausdorff uniform spaces, and Theorem 1

holds in this more general context.

Compact and totally bounded spaces admit sequential characterizations: X is

compact (resp. totally bounded) if each sequence in X has a convergent (resp.

Cauchy) subsequence. The chainable spaces that are uniformly chainable are

sequentially characterized by the behavior that the functions {<be: e > 0} exhibit

when restricted to ordered pairs whose coordinates come from an appropriately

chosen subsequence. Such a characterization rests on a basic theorem of combina-

torics [3].

Ramsey's Theorem. Let r be a positive integer and let {Ax, A2, . . ., AN) be a

partition of the r-element subsets of Z+. Then there is an infinite subset S of Z + and

i G {1, 2, . . . , N) such that each r-element subset of S belongs to A¡.

Definition. Let A' be a chainable metric space and let e > 0. The chain distance

function <be is said to be constant on a sequence {x„} in X if {</>e(x„, xm): n =£m)

consists of exactly one number. Similarly, <f>e is bounded on {x„} if {t>e(x„, xm):

n 7^= m) is a bounded set of numbers.

Theorem 2. Let X be a chainable metric space. The following are equivalent:

(a) X is uniformly chainable.

(b) For each e > 0 every sequence {x„} in X has a subsequence on which <be is

constant.

(c) For each e > 0 every sequence {x„} in X has a subsequence on which ¿>e is

bounded.

(d) Let {em} be a sequence of positive numbers convergent to zero. Each sequence

{x„} in X has a subsequence {x^} such that for each m G Z+ the function <¡>^ is

constant on a tail of {x^}.

Proof, (a) —> (b). Let e > 0. By assumption there exists N E. Z+ such that for

each x and v in X we have <f>e(x, v) < N. If (x„: n G Z + } is a finite set, then {xn}

has a constant subsequence on which <be is zero. Otherwise, by passing to a

subsequence we can assume that the terms of {x„} are distinct. For each i G

{1, 2, . . . , N) let A¡ = {{xj, xk}: $t{xfi xk) = /}. Clearly {Ax, . . . , AN] partitions

the two element subsets of the countably infinite set (x„: n G Z + ). By Ramsey's

Theorem there exist an A¡ and an infinite subset S of {x„: n Œ Z + ) such that all of
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the two element subsets of S belong to A¡. If we sequence S in the order of the

subscripts inherited from the original sequence, then we obtain the desired subse-

quence of {x„}.

(b) -* (d). According to (b) for each m in Z+ we can inductively construct

subsequences {x„m} of {x„} such that for each m (i) {x„m+1} is a subsequence of

{x„m}, and (ii) <¡>^ is constant on {x„m}. For each m let x^ = x™. Clearly ^ is

constant on x™, x™+,', x™+22, • • • which is a tail of {x^}.

(d) -» (a). Suppose X is not uniformly chainable. Let {em} be a sequence of

positive numbers convergent to zero. Since / = {e: X is not uniformly e-chainable}

is a nondegenerate interval with left endpoint zero, there exists m such that em G /.

Fix x0 in X. For each n G Z+, B£[{x0}] must be a proper subset of B^+X[{x0)]

because X is em -chainable but not uniformly em-chainable. For each n choose x„ in

BClttxo}]\BZttxo}l Clearly <f>J,xk> xn) > \n ~ k\- Hence, </>^ fails to be con-

stant on any subsequence of {x„}.

(b) '■** (c). Trivial.

(c) —» (a). The proof is a reiteration of the proof of the implication (d) —» (a).

We observe that the statement "{x„} has a Cauchy subsequence" is equivalent to

a stronger form of condition (d): Let {em} be a sequence of positive numbers

convergent to zero, and let {x„} be a sequence in X. If {x„} has no constant

subsequence, then {x„} has a subsequence {x^} such that for each m the function

t>   is one on a tail of {x^}.

We note that the bounded metric spaces are precisely those that can be

isometrically imbedded in complete uniformly chainable spaces. Since uniformly

chainable spaces are bounded, the sufficiency of the condition is clear. On the

other hand since a bounded metric space X can be imbedded in a closed ball of the

Banach space C(A') of bounded continuous real valued functions on X [4], the

condition is also necessary. Next we give a rather curious characterization of the

uniformly chainable spaces among the bounded chainable ones. Let A" be a

bounded chainable metric space. If A c X is nonempty we define the distance 8

from A to A' by the formula

8(A,X) = sup d(x, A).
x£X

Of course 8 just gives the Hausdorff distance from A to X [1]. For each n in Z + let

f"(A) = 8(B"[A], X). Notice that {f"(A)} is a decreasing sequence of nonnegative

reals and thus converges (though not necessarily to zero). A nontrivial characteriza-

tion is determined by the rate of convergence over all subsets A of X.

Theorem 3. Let X be a bounded chainable metric space. If A is a nonempty subset

of X let f"(A) denote the Hausdorff distance from B"[A] to X. Then X is uniformly

chainable iff, for each e > 0, {f"} converges uniformly on the set of nonempty subsets

ofX.

Proof. Let X be uniformly chainable. If e > 0 there exists n e. Z+ such that

each two points in X can be joined by an e-chain of length at most n. It follows

that f^(A) = 0 for each nonemtpy set A and k > n. Conversely suppose that X is
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not uniformly e-chainable for some positive e. Fix x0 in X. Then for each n in Z +,

X \ Ben[{x0}] ¥* 0. Fix n and let A = {x0} u X \ Bf"+4[{x0}]. For each k > 2n +

4 we have fek(A) = 0. On the other hand it is easy to see that

B?[A]cB;[{x0}]u(X\Br4[{x0}]).

As a result each point in the nonempty set B"+2[{x0}] \ 5en+1[{x0}] has distance in

excess of e from B"[A] so that f"(A) > e. Since n was arbitrary {/,"} fails to

converge uniformly.
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