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ON A THEOREM FROM "SKEW FIELD CONSTRUCTIONS"

P. M. COHN

Abstract. Let F be a skew field and C a central subfield, then the free /"-field on

X centralizing C is denoted by Fc<(..Y>.The object is to prove the following

theorem. Let F be a skew field with a central subfield C, let £ be a subfield of F

and put k = E n C; then there is a natural embedding of Ek4^X1^m F^XI^'û

and only if E and C are linearly disjoint over k.

This result replaces the erroneous Theorem 6.3.6 on p. 148 of the author's Skew

field constructions, a counterexample to the latter (due to G. M. Bergman) is also

described. The paper also includes an improved form of the specialization lemma

(I.C.Ï.

1. In [3] the following result was stated (Theorem 6.3.6, p. 148):

Let F be a (skew) field with centre C, let E be a subfield of F and put k = E n C,

then there is a natural embedding

(1) F*«A>-»Fc<A->.

We recall that for any set X, FC(X > is the free F-ring on X centralizing C; this is

a fir and its universal field of fractions is denoted by Fc <£ X ^.

Unfortunately the above theorem is false as stated; I am indebted to G. M.

Bergman for pointing this out to me, as well as supplying me with a counterexam-

ple (cf. §5 below). Our object here is to modify the statement so as to obtain a

correct result.

We shall use the term 'field' in the sense of 'not necessarily commutative division

ring', and sometimes add 'skew' for emphasis. Given subsets A', F of a field, we say

that X centralizes Y if xy = yx for all x E X, y E Y. By a central subfield of F we

understand a subfield centralizing F. Given a skew field F, let C, D be subfields of

F centralizing each other and put C n D = k, then there is a natural homomor-

phism

(2) C 0kD^>F,

obtained by mapping 2 u¡ 0 v¡ to 2 u¡v¡ («, G C, v¡ ED). We shall say that C and

D are linearly disjoint in F over k, if (2) is injective; this reduces to the usual

definition when F is commutative.

We shall prove

Theorem 1. Let F be a skew field with central subfield C, let E be a subfield of F

and put k = E n C; then there is a natural embedding (1) if and only if E and C are

linearly disjoint in F over k.
_
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The sufficiency will be proved in §4 and the necessity in §5, while §6 lists the

modifications needed in the applications made in [3], as well as another form of the

specialization lemma which is an easy consequence of Theorem 1. In §2 we briefly

recall the concepts and results needed in the proofs and in §3 we give some

auxiliary lemmas.

2. We recall that a square matrix A, say n X n, over any ring R is said to be full

if it cannot be written as A = PQ, where P is n X r, Q is r X n and r < n. E.g. any

invertible matrix over a field is full, and conversely, a full matrix over a field is a

nonzero divisor, hence invertible. Any ring homomorphism clearly maps any

nonfull matrix to a matrix which is again nonfull; if moreover, it maps full matrices

to full matrices, it is called honest. The ring of all n X n matrices over a ring R is

denoted by Tl„(R).

If K is any ring, then by a K-ring we understand a ring R with a homomorphism

K^> R; when R is a field we speak of a K-field. Let R be a semifir (i.e. every

finitely generated left or right ideal in 7? is free, of unique rank, cf. [1]); then 7? has

a universal field of fractions U, which is obtained by formally making all the full

matrices over R invertible. In particular, if K is a skew field and C a central

subfield, then the free Ä"-ring on a set X, KC(X}, defined as the AT-ring generated

by X with defining relations ax = xa for all x E X, a E C, is a semifir. It is even a

fir (i.e. all left or right ideals are free, of unique rank, cf. [1]), and its universal field

of fractions is Kc <£ X }>. Given a homomorphism / between semifirs R, S with

universal fields of fractions U, V respectively, we have a diagram

and from the construction of U and V it is clear that there is a homomorphism

U -* V to complete the diagram to a commutative square if and only if / is honest.

3. The last remark in §2 shows that to prove the sufficiency in Theorem 1 we

need only show that under the given condition the natural homomorphism

Ek(X}^Fc(X}

is honest, but this does not seem easy to verify directly. We shall in fact proceed

differently, by building up F from E 0kC. For this purpose we need several

lemmas. Throughout, k is a commutative field.

Lemma 1. Let R be a k-algebra and E/k a finite-dimensional field extension. If R

is a right Ore domain and RE = R 0k E is an integral domain, then RE is again a

right Ore domain.

For a related result see [5, Lemma 1].

Proof. Let K be the field of fractions of 7? and consider KE. This is finite-dimen-

sional over K, because [KE : K] = [E : k], so if we can prove that it is a domain, it

R

i
U

S

i
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must be a field. Write R* = R \ {0}, then every element of KE has the form

p = 2 \ 0 a¡b'x, where A, G E, ai G R, b E R*. Hencep = ub~x, where u = E\

0 a, G RE. It follows that R* is a right denominator set in RE (cf. [1, Chapter 0] or

[2, Chapter 12]): Given u G 7?£, b E R*, we have b~xu = uxbxx for some ux E RE,

bx E R*, hence ubx = bux and clearly ux ¥= 0 if u ^ 0. It follows that AT£ is a

domain: given ub~x, vc~x ̂  0, in KE, we have b~xv = Oiéf1 say, hence ub'x • vc~x =

uvxbxxc~x = uvx(cbx)~x and this is not 0 because uvx ¥= 0. Thus KE is a domain,

hence a field, and it follows that RE is a right Ore domain.

Lemma 2. Let E be a skew field which is a k-algebra, and let C/k be a

commutative field extension. If E 0k C is a domain, then (i) E 0k C is an Ore

domain and (ii) we have

(I) (E0kC)c<X)^Ek(X}0kC

Proof. To prove (i) we may without loss of generality assume that C is finitely

generated over k, say C is a finite extension of C0 = k(T), where F= {/,,...,/,.}

is a finite set of indeterminates. Now E 0k C0 is a localization of E 0 k[T] =

E[T], which is Noetherian (by the Hubert basis theorem), hence Ore, so E 0 C0 is

an Ore domain. Now E 0k C = (E 0k C0) 0C C is a finite-dimensional exten-

sion, hence an Ore domain by Lemma 1.

To prove (ii) we remark that we have a /c-bilinear map from Ek(X}, C to

(E 0k C)C(X}, hence a homomorphism from right to left in (1), and an

(E 0k C)-ring homomorphism from left to right, by the universal property of the

free (E 0k C)-ring, and these two maps clearly are mutually inverse.

Next we give a criterion for a skew field to split under a finite field extension.

This is a useful result which is probably well known, but no convenient reference

seems to be available.

Lemma 3. Let E be a skew field which is a k-algebra, and let C = k(a) be a simple

algebraic extension of k, generated by an element a with minimal polynomial f over k.

Then E 0k C is Artinian and moreover (i) it is simple if and only iff is irreducible

over the centre of E, (ii) it is a field if and only iff is irreducible over E.

Proof. It is clear that E 0k C is Artinian, as finite-dimensional F-ring. Now we

have E 0kC = E[t]/(f), and the 2-sided ideals of E[t] are generated by invariant

elements of E[t], which (up to unit factors) are monic polynomials in t with

coefficients in the centre of E (cf. [1, p. 297]). Thus E[t]/(f) is simple precisely

when/is irreducible over the centre, Z say, of E. Suppose now that/is irreducible

over Z, thus it is an 7-atom in the terminology of [1]; then by Proposition 6.5.2, p.

228 of [1], we have E[t]/(f) = 3K„(F>), where D is a field and n is the number of

factors of / in a complete factorization over E[t]. Thus F 0k C is a field if and

only if n = 1, i.e./is irreducible over E.

Next we show that irreducibility is preserved by free extensions of the ground

field.
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Lemma 4. Let E be a skew field which is a k-algebra. If C/k is a simple algebraic

extension whose generator has minimal polynomial f, and f is irreducible over E, thenf

remains irreducible over Ek <£ X 1)>, and R = Ek ^ X ^ 0k C is the universal field of

fractions of (E 0k C)C(X).

Proof. By Lemma 3, E 0k C is a field, and if we can prove the last assertion of

the lemma, the rest will follow by another application of Lemma 3.

By Lemma 2 we have the isomorphism (1), and E 0kC is a field, hence

Ek(X} 0k C is a fir; by inverting certain matrices (viz. all the full matrices over

Ek(X}) we obtain 7?. But we obtain the universal field of fractions, U say, of

Ek(X} 0k C by inverting all the full matrices; thus U is obtained from 7? by

inverting certain matrices, and these must be full over R since any invertible

matrices over U are full. Now Ek <£ X ^ is a field with centre k (cf. [4, Theorem

4.3]), and R is obtained from it by tensoring with a finite extension C of k, hence

R = W„(D), where D is a field (cf. [2, Theorem 2, Corollary of 10.7]). Since m„(D)

is simple, the natural homomorphism 2ft„(7)) = R —» t/is injective, hence n = 1, so

R = Wln(D) = U, i.e. R is the universal field of fractions of (E 0k C)C(X), as

claimed.

4. We now come to the proof of Theorem 1. We begin by proving a special case:

Lemma 5. Let F be a skew field with subfields C, D such that CEDE Fand C is

central in F. Then

(1) FC<CA>^F¿7)C<A>,

where ° denotes the field coproduct (cf. [3, Chapter 5]). Hence we have a natural

embedding

(2) 7>C<A>^FC<A>.

Proof. Using * to denote the ring coproduct, we have

F*DC(X> = F*D^C(.Xy = F£C<A-> = FC<A">.

By Lemma 5.4.1 of [3] it follows that the natural homomorphism FC<A' ) -*

7*2 7)c <£ X ;)> is honest, hence we have an embedding

Fc<A>->i$2)c<A>,

where the field coproduct is by definition the universal field of fractions of the ring

coproduct. But the right-hand side is a field generated by F and X, hence it is

generated by the image of FC<Ç XI)-, i.e. we have the natural isomorphism (1), and

(2) is an immediate consequence.

Now let £ be a skew field which is a A>algebra and let C/k be a commutative

field extension. Assume that E 0k C is an integral domain, then by Lemma 2 it is

an Ore domain and so has a field of fractions D. We claim that in this situation we

have a homomorphism

(3) Ek<ÇX^0kC^Dc<ÇX^.

We remark that such a homomorphism is necessarily an embedding because

Ek ^ X ^ has centre k [4, I.e.], so the left-hand side of (3) is simple, by Theorem 2,

Corollary of 10.7 in [2], and the kernel of (3) is therefore zero.
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To prove (3) we can proceed stepwise. Thus if (3) holds as stated and also with

E, k, C replaced by D, C, C, respectively, where k E C E C,, then on writing Dx

for the field of fractions of D 0C Cx we have a homomorphism

(Ek<CX>0k C) 0C C, -*Z>C<A>®C C, -* 7>1C|<A->,

hence we have a mapping

£^<A'>®/tC1^7)1Ci<A->.

Next if C is the union of a directed family of fields Cx and Dx is the field of

fractions of F 0k Cx, and we have maps

Ek<X>0kCx^Dxc^X>,

then we have honest homomorphisms Ek(X} —» Dxc (A'), and by passing to the

limit, we obtain an honest homomorphism

Ek(xy^Dc(xy,

which gives rise to an embedding of Ek<Ç.X y in DC<Ç.X ̂ -, and hence to a

homomorphism (3).

Now any commutative field extension of k can be obtained as the direct union of

finitely generated extensions, and these can be built up as a succession of simple

extensions, either transcendental or algebraic. Taking the transcendental case first,

suppose that C = k(t), where / is a central indeterminate. Then (3) reduces to

(4) Ek<X>0kk(t)^E(t)k(i^X>.

By Lemma 6.3.4 of [3], the homomorphism Ek(X} -» F(;)jt(r)<Ar > is honest, hence

we have an embedding of Ek <£ X ^ in E(t)k^ -Ç X }•. Now it follows that we have a

bilinear map giving rise to a homomorphism (4). Next, if C is a simple algebraic

extension of k, say C = k(a), where a has the minimal polynomial / over k, and

E 0k C is assumed to be an integral domain, then / remains irreducible over E

(Lemma 3), hence it remains irreducible over Ek^X1} (Lemma 4), therefore

Ek <£ X y 0k C is a field. Moreover, it is the universal field of fractions of

(E 0k C)c(Xy, by Lemma 4, hence we obtain an isomorphism

Ek<tX>0kC^(E0kC)c<X>.

So (3) is proved in this case also, and it follows that (3) holds generally whenever

E 0k C is an integral domain.

To prove the sufficiency in Theorem 1 we take F, C, E, k as in Theorem 1 and

assume that E and C are linearly disjoint over k. Then E 0k C is isomorphic to a

subring of F, hence an integral domain, which must be Ore by Lemma 2. Let D be

the field of fractions, then by (3) we have an embedding

(5) £*<*>-> Z)C<A>.

Since the field of fractions of an Ore domain is unique (up to isomorphism), D may

be embedded in F, and by Lemma 5 we have an embedding of Dc «£ X ^ in

FC<Ç.X1)-. Combining this with (5), we obtain the required embedding of Ek •Ç.X'}-

inFc<A->.
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5. To prove the necessity of the conditions, suppose that we have a natural

embedding

Ft<A>^Fc<A>,

then we have a bilinear map of the pair Ek < X >, C into Fc < X >, hence there is a

homomorphism

(1) Ek<ÇX>0kC^Fc<ÇX>.

Now FA.<£Ar:).  has centre k,   so as before we can conclude that (1) is an

embedding; the restriction to E 0k C gives a natural embedding of the latter in F,

hence E and C are linearly disjoint in F over k.

To give a concrete example (due to G. M. Bergman), let us take for F the real

quaternions and put C = R, the centre of F. Now let a = a + bi be a complex

number whose real part is not rational, such that Q(a) n R = Q, e.g., if a, b are

independent transcendentals. We put E = Q(a), so that k = Q.

For any x E X we can in FC<ÇX 1^ write x = xQ + xx, where xQ = ^(x — ixi),

xx =j(x + ixi), then x0i = ix0, xxi = -ùc,. Hence ax — xa — axx — xxa = 2bixx;

similarly

2 2        i    /.•
ax — xa   = 2abixx

(because a2 = a2 — b2 + 2abi), therefore (ax — xa)~x(a2x — xa2) is central in

Fc <£ X ^ and lies in the F-field generated by x, but does not he in k.

6. The applications made of Theorem 6.3.6 in [3] were as follows. On p. 156 the

theorem is used twice; the first time we can use Lemma 6.3.4 instead (as was

observed I.e.), while the second time we need only the special case covered by

Lemma 5 above, so these applications are unaffected. On p. 157, Theorem 6.3.6 is

again invoked, but is not strictly applicable because X is changed. In any case there

is a direct proof, which in essence goes as follows: We want to obtain an

embedding Fc<(: X ;)•->• Fc-Ç. X' >, where X E X'. This amounts to showing that

the homomorphism FC(X} —» FC<A"> is honest, and this follows because FC(X}

is a retract, for if a matrix A over Fc<Ar) can be written as A = PQ over FC(X'},

where P is n X r, Q is r X n and r <n, then we can put x = 0 for x G A" \ X to

pull the factorization down to FC{X}. On p. 158 the reference to Theorem 6.3.6

should be replaced by a reference to Theorem 6.4.2.

The principal application of Theorem 6.3.6 is in the proof of Theorem 7.2.7,

p. 171 of [3], and here the statement has to be modified as follows:

Theorem 2. Let E be a skew field with centre C such that (i) [E : C] = oo and (ii)

C is infinite. If D is a subfield of E, linearly disjoint from C in E over k = D n C,

then every element of Dk<Ç.X1} is nondegenerate on E.

The proof is as for Theorem 7.2.7, using Theorem 1 in place of Theorem 6.3.6. In

the proof of Theorem 7.2.6 there is also a reference to Theorem 6.3.6, but this may

be replaced by a reference to Lemma 6.3.5 or proved directly, using power series.

Finally we observe the following version of the specialization lemma, which may

be proved by Theorem 1.
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Theorem 3. Let K be a field with centre C such that (i) [K : C] = oo, (ii) C is

infinite. If E is any subfield of K linearly disjoint from C in K over k = E n C, then

any full matrix over Ek(X} is nonsingular for some set of values of X in K.

The proof follows by observing that the natural map from Ek(X} to KC(X) is

honest, by Theorem 1.

Theorem 3 is essentially the version of the specialization lemma used in the proof

of Theorem 2. The case E = k of Theorem 3 is perhaps worth stating separately:

Corollary. Let K be a field with centre C such that [K : C] = oo and C is

infinite. If E is a subfield of K containing C, then any full matrix over FC<A"> is

nonsingular for some set of values in K.

We remark that for any field E which is a A:-algebra we can find an extension

field K such that [K : k] = oo and k is the exact centre of K, e.g. K = Ek < A"^, as

remarked earlier [4, Theorem 4.3].
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