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ON ANISOTROPIC SOLVABLE LINEAR ALGEBRAIC GROUPS

S. P. WANG1

Abstract. A connected linear algebraic solvable group G defined over a field k is

anisotropic over k if G has no fc-subgroup splitting over k. A simple criterion for

anisotropic solvable groups is presented when fc is a local field.

Let G be a connected linear algebraic solvable group defined over a field k. The

group G is said to be splitting over k if G has a normal series of A:-subgroups such

that the factor groups are £-isomorphic either to the additive group Ga or the

multiplicative group Gm. We say that G is anisotropic over k if G has no fc-sub-

groups splitting over k. In this note, we give a criterion for anisotropic solvable

groups in terms of compactness condition when A: is a local field. Our main result is

the following theorem.

Theorem M. Let G be a connected linear algebraic solvable group defined over a

local field k. Then the following conditions are equivalent.

(i) G is anisotropic over k.

(ii) G is nilpotent, and both the maximal torus T of G and the quotient group G/ T

are anisotropic over k.

(iii) The group G(k) of k-rational points of G is compact where G(k) is endowed

with the locally compact topology from that of k.

When G is a torus, the result is well known. The argument of the next lemma is

due to Prasad [2].

Lemma 1. Let T be a torus defined over a local field k. Then T(k) is compact if and

only if T is anisotropic over k.

Proof. We know that F is splitting over a finite Galois extension K of k. Clearly,

T(k) is a closed subgroup of T(K). From this T(k) is compact if and only if for

every / E T(k) and character x of T, x(t) is of absolute value 1. If T(k) is not

compact, then there exists t E T(k) such that for at least one character x of F, x(0

has absolute value ¥= 1. This implies that 2aSGai(Ay*) axw a^80 ̂ as aDsomte value

¥= 1. Thus the character 2oeGal(A:/fc) ox is nontrivial and defined over k. This shows

that T is Anisotropie.

For umpotent groups, we need more lemmas.
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Lemma 2. Let k be a local field with characteristic cn(k) = p > 0 and A a subset

of k". If f is an additive k-morphism of Ga" such that f(A) is relatively compact in k,

then up to a k-automorphism of G¡¡, there exists an integer r with 0 < r < n satisfying

the following conditions.

(i)f is independent of the first r coordinates.

(ii) Let pr be the projection of G£ onto the last n — r coordinates. The projection

pT(A) of A is relatively compact in k"~r.

Proof. Clearly, we may assume that / is nontrivial. For 1 < / < n, we define an

additive &-morphism / of Ga by /1 = / ° t, where t, is the inclusion map of Ga into

the z'th component. Since/is additive, for x = (xx, . . ., xn) E G£, we have

/(*)=/i(*,)+ • • • +/„(*„)•

Denote by 7 the set of indices/ with^ =£ 0. After replacing/ by / ■ a where a is a

^-automorphism of G", we may assume that the cardinality of 7 is minimal. Hence

it suffices to show that A is relatively compact when 7= (1, 2, ...,«}. Suppose

that the assertion is false. There exists a sequence £m = (£i(w), . . . , |„(m)) of

elements in A such that the norms ||£m|| (m = 1, 2, ... ) are not bounded. The

maps/ (i = I, . . . , n) are additive /c-morphisms of Ga. Hence we can write

f(t) = ai0t + aiiXt" + ■ ■ ■ +a,Af*,

with a¡A =£ 0 (/ = 1, . . . , ri). Here we may assume that the number 2"_! s¡ has

been chosen to be minimal. After replacing (£m) by a subsequence and up to a

^-automorphism of G", there is a positive integer v < n satisfying the following

conditions.

(1) $(m) -> oo,        Ki<v.

(2) For i,j < v, the numbers/?*' ord¿(£(m)) — psJ ord^(¿(w))

(2.1) are independent of m.

(3) For /' < v,j > v, the sequence/?*; ordfc(^(w)) — p* ord¿.(£,(m))

tends to oo.

Now let s = max{Sj, . . . , s„) and assume, as we may, that s = sx. Since f(A) is

relatively compact in k, by (1) of (2.1), the sequence f(í^)£i(m)~p'' converges to

zero, and by (2) and (3) of (2.1) the sequence bm,

bm = «,,,, + a2^2(rn)Urn)-p''~'T + * ' ' +^(4,(^)I1(^)-/","T"'

converges to zero. It follows readily from (2) of (2.1) that there exist £2, . . . ,i„ E k

such that

(2-2) au, + a2,£Ç + ■■■ +av^" = 0.

Then we have the identity

a,   x?'1 + • • • +a   xp'w

= a2,2(x2 - i2xrT + ■■■ +<U*, - urT-
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Thus if we set xj = Xj — ̂ xp*' 'J (j = 2, . . . ,v) and x'¡ = x¡, i & {2,..., v), it is

easy to verify that in the coordinates (x'x,. . ., x'n)

deg(/,(*;)) < deg(fx(xx))

and

deg(f(x;)) = deg(/(x,)),       (K i < n),

where deg is the degree of a polynomial. Obviously we arrive at a contradiction to

our choice of minimality of 2?_ i s,. Therefore A has to be relatively compact in k"

and the lemma is proved.

Lemma 3. Let k be as in Lemma 2, A a subset of k" and/„ . . . ,f, additive

k-morphisms of Ga". Suppose that the images f¡(a) are relatively compact in k

(i = 1, . . ., /). 77tevz Ga" has a decomposition G^ = H X L defined over k such that

77 stt Gra, L =s¡ G2~r over k. H c ker(/) (j = I, . . ., I) and prL(A) is relatively

compact in L(k) where prL is the projection map of Ga" into L.

Proof. We may assume that A is not relatively compact in k". By Lemma 2, Ga"

has a decomposition G£ = M X N defined over k such that M =; G'a, N ==¿ G"~'

over k, t > 0, and M c ker(/,), and the projection prN(A) of A in N is relatively

compact in N(k). Now let Ax = prM(A). Clearly Ax,f2\M, . . . ,f,\M satisfy all the

conditions in Lemma 3. By induction on /, our assertion is true in M and

consequently in Ga".

Proposition 4. Let k be a local field and G a k-subgroup of Ga". Then Gfl" has a

decomposition Ga" = 77 X L defined over k such that 77 ^ G'a, L^G2~r over k,

77 c G and (G n L)(k) is compact.

Proof. We may assume that ch(&) = p > 0. By [4, p. 102, Proposition], there

exist additive fc-morphisms /,,...,/ such that G= n,-_! ker(/). Now the

proposition is an immediate consequence of Lemma 3.

Theorem 5. Let G be a connected linear algebraic unipotent group defined over a

local field k. The following conditions are equivalent.

(i) G is anisotropic over k.

(ii) There exist no nontrivial additive k-morphisms from Ga into G.

(iii) G(k) is compact.

Proof. If ch(k) = 0, G is always ^-splitting. In this case, all three conditions are

equivalent to G = {1}. Hence we may assume that ch(A:) = p > 0 and prove the

theorem in several steps.

Clearly, (iii) -» (i) —» (ii). Thus we show (ii) -» (iii). Condition (ii) is equivalent to

the condition that the maximal fc-splitting subgroup of G is {1}.

Step 1. G is commutative and Gp = {1}. We know [3, p. 34, Corollary 2] that G

is isomorphic to G"1 over kp for certain nonnegative integers m, I. Hence there is

an isomorphism G -* G™ defined over kp . Let /: G —» Gj" be the fc-morphism

given by fix) = t(xY (x E G). Clearly, ker(/) = {1}. Express t in the form

t = 2^_! uaT„ where ra are defined over k and ua (Ekp ) are linearly independent
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over k. It is easy to see that for x, y E G(k) tb(x + y) = ra(x) + ra(y). Since G(k)

is Zariski-dense in G, the maps t0 are ¿-morphisms of G into G™. By assumption

on t, the differential dr of t is an isomorphism, it follows readily that n a ker(dTa)

= {0}. Therefore the map g: G -h> G™ given by g(x) = (r„(x)) (x E G) is a

separable ¿-morphism. Now using/ and g, we define w: G —> Ga(,'+1)m by <o(x) =

(/(*), gO)) (* G G). Clearly, « defines a ¿-embedding of G into Ga(r+1)m. From

Proposition 4, G(¿) has to be compact.

Step 2. Suppose that G has a connected normal ¿-subgroup .A/ with {1} =¡t= N ^

G. Let L = G/N, and 7/ its maximal ¿-splitting subgroup. If 7/ ^ L, let 77 be the

inverse image of L' in G. By induction on dimension, 77(¿) and (G/H)(k) are

compact. Since the image of G(k) in (G/H)(k) is open, it follows that G(k)/H(k)

is compact, thus so is G(k).

Step 3. G is commutative and Gp J= {1}. Let / be the largest integer with

G*' =t {1} and N = Gp'. Let L = G/JV and 7/ the maximal ¿-splitting subgroup of

L. If L =h L', by Step 2, G(¿) is compact. If L = L', the map j:Hxf (x e G)

factors through L. Then Gp, as a homomorphic image of a ¿-splitting unipotent

group, by [3, p. 35, Proposition 6] is ¿-splitting. However, Gp ¥= {1} and by

condition (ii), this is impossible.

Step 4. G is not commutative. Let N = [G, G], L = G/N and L' the maximal

¿-splitting subgroup of L. Suppose that L = L'. Let 77 be the last term in the lower

central series with 77 £ Z(G) where Z(G) is the center of G. Then choose any

h E H(k) such that h & Z(G) and consider the map x h» xhx~xh~x (x E G). The

image of the map is in Z(G) by our choice of 77, hence is a ¿-morphism of

algebraic groups. It factors through L. Therefore [h, G], by [3, Proposition 6] is

¿-splitting. By (ii), [h, G] is anisotropic over k, thus [h, G] = {1}. However h &

Z(G), we have a contradiction. Therefore L' =£ L and by Step 2, G(k) is compact.

Now are ready to prove our main result.

Proof. When ch(A:) = 0, all the three conditions are equivalent to that G is an

isotropic torus for Ru(G) is always sphtting over k. Hence we may assume that

ch(Â:) = p > 0.

(i) -» (ii). By [4, p. 114, Corollary 2], G is nilpotent. Clearly, F is anisotropic over

k. Let 77 be the maximal ¿-splitting subgroup of G/ F and L its preimage in G.

Since F is splitting over a finite separable extension K of k, L is sphtting over K.

This implies that 7?„(L) is defined over K. On the other hand, L is defined over k,

so 7?„(L) is ¿-closed. Thus Ru(L) is defined over ¿. As 7?„(L) is ¿-isomorphic to

L/T = 77, RU(L) is splitting over ¿. Therefore RU(L) = {1} and so is 77 = {1}.

(ii) -» (iii). From Lemma 1 and Theorem 5, T(k) and (G/ FX¿) are compact. We

know that the image of G(k) in (G/T)(k) is open, hence compact. It follows

readily that G(k) is compact because T(k) and G(k)/ T(k) are compact.

(iii) -» (i) is obvious.
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