ON ANISOTROPIC SOLVABLE LINEAR ALGEBRAIC GROUPS

S. P. WANG¹

ABSTRACT. A connected linear algebraic solvable group G defined over a field k is anisotropic over k if G has no k-subgroup splitting over k. A simple criterion for anisotropic solvable groups is presented when k is a local field.

Let G be a connected linear algebraic solvable group defined over a field k. The group G is said to be *splitting over* k if G has a normal series of k-subgroups such that the factor groups are k-isomorphic either to the additive group G_a or the multiplicative group G_m . We say that G is anisotropic over k if G has no k-subgroups splitting over k. In this note, we give a criterion for anisotropic solvable groups in terms of compactness condition when k is a local field. Our main result is the following theorem.

THEOREM M. Let G be a connected linear algebraic solvable group defined over a local field k. Then the following conditions are equivalent.

- (i) G is anisotropic over k.
- (ii) G is nilpotent, and both the maximal torus T of G and the quotient group G/T are anisotropic over k.
- (iii) The group G(k) of k-rational points of G is compact where G(k) is endowed with the locally compact topology from that of k.

When G is a torus, the result is well known. The argument of the next lemma is due to Prasad [2].

LEMMA 1. Let T be a torus defined over a local field k. Then T(k) is compact if and only if T is anisotropic over k.

PROOF. We know that T is splitting over a finite Galois extension K of k. Clearly, T(k) is a closed subgroup of T(K). From this T(k) is compact if and only if for every $t \in T(k)$ and character χ of T, $\chi(t)$ is of absolute value 1. If T(k) is not compact, then there exists $t \in T(k)$ such that for at least one character χ of T, $\chi(t)$ has absolute value $\neq 1$. This implies that $\sum_{\sigma \in \operatorname{Gal}(K/k)} \sigma_{\chi(t)}$ also has absolute value $\neq 1$. Thus the character $\sum_{\sigma \in \operatorname{Gal}(K/k)} \sigma_{\chi}$ is nontrivial and defined over k. This shows that T is k-isotropic.

For unipotent groups, we need more lemmas.

Received by the editors April 6, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 20G25.

Key words and phrases. Linear algebraic groups, solvable groups, unipotent groups, local fields.

¹Partially supported by NSF Grant No. 79-00695.

12 S. P. WANG

LEMMA 2. Let k be a local field with characteristic ch(k) = p > 0 and A a subset of k^n . If f is an additive k-morphism of G_a^n such that f(A) is relatively compact in k, then up to a k-automorphism of G_a^n , there exists an integer r with $0 \le r \le n$ satisfying the following conditions.

- (i) f is independent of the first r coordinates.
- (ii) Let pr be the projection of G_a^n onto the last n-r coordinates. The projection pr(A) of A is relatively compact in k^{n-r} .

PROOF. Clearly, we may assume that f is nontrivial. For $1 \le i \le n$, we define an additive k-morphism f_i of G_a by $f_i = f \circ \iota_i$ where ι_i is the inclusion map of G_a into the *i*th component. Since f is additive, for $x = (x_1, \ldots, x_n) \in G_a^n$, we have

$$f(x) = f_1(x_1) + \cdot \cdot \cdot + f_n(x_n).$$

Denote by I the set of indices j with $f_j \neq 0$. After replacing f by $f \circ \alpha$ where α is a k-automorphism of G_a^n , we may assume that the cardinality of I is minimal. Hence it suffices to show that A is relatively compact when $I = \{1, 2, \ldots, n\}$. Suppose that the assertion is false. There exists a sequence $\xi_m = (\xi_1(m), \ldots, \xi_n(m))$ of elements in A such that the norms $\|\xi_m\|$ $(m = 1, 2, \ldots)$ are not bounded. The maps f_i $(i = 1, \ldots, n)$ are additive k-morphisms of G_a . Hence we can write

$$f_i(t) = a_{i,0}t + a_{i,1}t^p + \cdots + a_{i,s}t^{p^{s_i}},$$

with $a_{i,s_i} \neq 0$ (i = 1, ..., n). Here we may assume that the number $\sum_{i=1}^{n} s_i$ has been chosen to be minimal. After replacing (ξ_m) by a subsequence and up to a k-automorphism of G_a^n , there is a positive integer $\nu \leq n$ satisfying the following conditions.

- $(1) \xi_i(m) \to \infty, \qquad 1 \le i \le \nu.$
- (2) For $i, j \le \nu$, the numbers p^{s_i} ord_k $(\xi_i(m)) p^{s_j}$ ord_k $(\xi_i(m))$
- (2.1) are independent of m.
 - (3) For $i \le \nu, j > \nu$, the sequence p^{s_j} ord_k $(\xi_j(m)) p^{s_i}$ ord_k $(\xi_i(m))$ tends to ∞ .

Now let $s = \max\{s_i, \ldots, s_\nu\}$ and assume, as we may, that $s = s_1$. Since f(A) is relatively compact in k, by (1) of (2.1), the sequence $f(\xi_m)\xi_1(m)^{-p^{s_1}}$ converges to zero, and by (2) and (3) of (2.1) the sequence b_m ,

$$b_m = a_{1,s_1} + a_{2,s_2} (\xi_2(m)\xi_1(m)^{-p^{s_1-s_2}})^{p^{s_2}} + \cdots + a_{p,s_r} (\xi_p(m)\xi_1(m)^{-p^{s_1-s_p}})^{p^{s_r}},$$

converges to zero. It follows readily from (2) of (2.1) that there exist $\xi_2, \ldots, \xi_r \in k$ such that

(2.2)
$$a_{1,s_1} + a_{2,s_2} \xi_2^{p^{s_2}} + \cdots + a_{\nu,s_\nu} \xi_{\nu}^{p^{s_\nu}} = 0.$$

Then we have the identity

(2.3)
$$a_{1,s_1}x_1^{p^{s_1}} + \cdots + a_{\nu,s_{\nu}}x_{\nu}^{p^{s_{\nu}}}$$

$$= a_{2,s_{\nu}}(x_2 - \xi_2x_1^{p^{s_1-s_2}})^{p^{s_2}} + \cdots + a_{\nu,s_{\nu}}(x_{\nu} - \xi_{\nu}x_1^{p^{s_1-s_{\nu}}})^{p^{s_{\nu}}}.$$

Thus if we set $x'_j = x_j - \xi_j x_1^{p^{x_1-x_j}}$ $(j = 2, \ldots, \nu)$ and $x'_i = x_i$, $i \notin \{2, \ldots, \nu\}$, it is easy to verify that in the coordinates (x'_1, \ldots, x'_n)

$$\deg(f_1(x_1')) < \deg(f_1(x_1))$$

and

$$\deg(f_i(x_i')) = \deg(f_i(x_i)), \qquad (1 < i \le n),$$

where deg is the degree of a polynomial. Obviously we arrive at a contradiction to our choice of minimality of $\sum_{i=1}^{n} s_i$. Therefore A has to be relatively compact in k^n and the lemma is proved.

LEMMA 3. Let k be as in Lemma 2, A a subset of k^n and f_1, \ldots, f_l additive k-morphisms of G_a^n . Suppose that the images $f_i(a)$ are relatively compact in k ($i = 1, \ldots, l$). Then G_a^n has a decomposition $G_a^n = H \times L$ defined over k such that $H \simeq G_a^r$, $L \simeq G_a^{n-r}$ over k. $H \subset \ker(f_j)$ ($j = 1, \ldots, l$) and $\operatorname{pr}_L(A)$ is relatively compact in L(k) where pr_L is the projection map of G_a^n into L.

PROOF. We may assume that A is not relatively compact in k^n . By Lemma 2, G_a^n has a decomposition $G_a^n = M \times N$ defined over k such that $M \simeq G_a^t$, $N \simeq G_a^{n-t}$ over k, t > 0, and $M \subset \ker(f_1)$, and the projection $\operatorname{pr}_N(A)$ of A in N is relatively compact in N(k). Now let $A_1 = \operatorname{pr}_M(A)$. Clearly $A_1, f_2 | M, \ldots, f_l | M$ satisfy all the conditions in Lemma 3. By induction on l, our assertion is true in M and consequently in G_a^n .

PROPOSITION 4. Let k be a local field and G a k-subgroup of G_a^n . Then G_a^n has a decomposition $G_a^n = H \times L$ defined over k such that $H \simeq G_a^r$, $L \simeq G_a^{n-r}$ over k, $H \subset G$ and $(G \cap L)(k)$ is compact.

PROOF. We may assume that ch(k) = p > 0. By [4, p. 102, Proposition], there exist additive k-morphisms f_1, \ldots, f_l such that $G = \bigcap_{i=1}^{l} \ker(f_i)$. Now the proposition is an immediate consequence of Lemma 3.

THEOREM 5. Let G be a connected linear algebraic unipotent group defined over a local field k. The following conditions are equivalent.

- (i) G is anisotropic over k.
- (ii) There exist no nontrivial additive k-morphisms from G_a into G.
- (iii) G(k) is compact.

PROOF. If ch(k) = 0, G is always k-splitting. In this case, all three conditions are equivalent to $G = \{1\}$. Hence we may assume that ch(k) = p > 0 and prove the theorem in several steps.

Clearly, (iii) \rightarrow (i) \rightarrow (ii). Thus we show (ii) \rightarrow (iii). Condition (ii) is equivalent to the condition that the maximal k-splitting subgroup of G is $\{1\}$.

Step 1. G is commutative and $G^p = \{1\}$. We know [3, p. 34, Corollary 2] that G is isomorphic to G_a^m over $k^{p^{-l}}$ for certain nonnegative integers m, l. Hence there is an isomorphism $G \xrightarrow{\tau} G_a^m$ defined over $k^{p^{-l}}$. Let $f: G \to G_a^m$ be the k-morphism given by $f(x) = \tau(x)^{p^l}$ ($x \in G$). Clearly, $\ker(f) = \{1\}$. Express τ in the form $\tau = \sum_{\sigma=1}^r \omega_\sigma \tau_\sigma$ where τ_σ are defined over k and ω_σ ($\in k^{p^{-l}}$) are linearly independent

14 S. P. WANG

over k. It is easy to see that for $x, y \in G(k)$ $\tau_{\sigma}(x + y) = \tau_{\sigma}(x) + \tau_{\sigma}(y)$. Since G(k) is Zariski-dense in G, the maps τ_{σ} are k-morphisms of G into G_a^m . By assumption on τ , the differential $d\tau$ of τ is an isomorphism, it follows readily that $\bigcap_{\sigma} \ker(d\tau_{\sigma}) = \{0\}$. Therefore the map $g: G \to G_a^{rm}$ given by $g(x) = (\tau_{\sigma}(x))$ $(x \in G)$ is a separable k-morphism. Now using f and g, we define $\omega: G \to G_a^{(r+1)m}$ by $\omega(x) = (f(x), g(x))$ $(x \in G)$. Clearly, ω defines a k-embedding of G into $G_a^{(r+1)m}$. From Proposition 4, G(k) has to be compact.

- Step 2. Suppose that G has a connected normal k-subgroup N with $\{1\} \neq N \neq G$. Let L = G/N, and L' its maximal k-splitting subgroup. If $L' \neq L$, let H be the inverse image of L' in G. By induction on dimension, H(k) and (G/H)(k) are compact. Since the image of G(k) in G(k) is open, it follows that G(k)/H(k) is compact, thus so is G(k).
- Step 3. G is commutative and $G^p \neq \{1\}$. Let l be the largest integer with $G^{p'} \neq \{1\}$ and $N = G^{p'}$. Let L = G/N and L' the maximal k-splitting subgroup of L. If $L \neq L'$, by Step 2, G(k) is compact. If L = L', the map $x \mapsto x^p$ ($x \in G$) factors through L. Then G^p , as a homomorphic image of a k-splitting unipotent group, by [3, p. 35, Proposition 6] is k-splitting. However, $G^p \neq \{1\}$ and by condition (ii), this is impossible.
- Step 4. G is not commutative. Let N = [G, G], L = G/N and L' the maximal k-splitting subgroup of L. Suppose that L = L'. Let H be the last term in the lower central series with $H \not\subset Z(G)$ where Z(G) is the center of G. Then choose any $h \in H(k)$ such that $h \notin Z(G)$ and consider the map $x \mapsto xhx^{-1}h^{-1}$ ($x \in G$). The image of the map is in Z(G) by our choice of H, hence is a k-morphism of algebraic groups. It factors through L. Therefore [h, G], by [3, Proposition 6] is k-splitting. By (ii), [h, G] is anisotropic over k, thus $[h, G] = \{1\}$. However $h \notin Z(G)$, we have a contradiction. Therefore $L' \neq L$ and by Step 2, G(k) is compact.

Now are ready to prove our main result.

PROOF. When ch(k) = 0, all the three conditions are equivalent to that G is an isotropic torus for $R_u(G)$ is always splitting over k. Hence we may assume that ch(k) = p > 0.

- (i) \rightarrow (ii). By [4, p. 114, Corollary 2], G is nilpotent. Clearly, T is anisotropic over k. Let H be the maximal k-splitting subgroup of G/T and L its preimage in G. Since T is splitting over a finite separable extension K of k, L is splitting over K. This implies that $R_u(L)$ is defined over K. On the other hand, L is defined over k, so $R_u(L)$ is k-closed. Thus $R_u(L)$ is defined over k. As $R_u(L)$ is k-isomorphic to L/T = H, $R_u(L)$ is splitting over k. Therefore $R_u(L) = \{1\}$ and so is $H = \{1\}$.
- (ii) \rightarrow (iii). From Lemma 1 and Theorem 5, T(k) and (G/T)(k) are compact. We know that the image of G(k) in (G/T)(k) is open, hence compact. It follows readily that G(k) is compact because T(k) and G(k)/T(k) are compact.
 - (iii) \rightarrow (i) is obvious.

REFERENCES

- 1. A. Borel, Linear algebraic groups, Benjamin, New York, 1969.
- 2. Gopal Prasad, Elementary proof of a theorem of Tits and of a theorem of Bruhat-Tits (preprint).
- 3. M. Rosenlicht, Some rationality questions on algebraic groups, Ann. Mat. Pura Appl. (4) 43 (1957), 25-50.
- 4. _____, Questions of rationality for solvable algebraic groups over nonperfect fields, Ann. Mat. Pura Appl. (4) 61 (1963), 97-120.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907