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DERIVATIONS IN PRIME RINGS

B. FELZENSZWALB1

Abstract. Let R be a ring and d ¥=0 a. derivation of R such that d(x") = 0,

n •» n(x) > 1, for all x G R. It is shown that if R is primitive then J? is an infinite

field of characteristicp > 0 andp\n(x) if d(x) =£ 0. Moreover, if R is prime and the

set of integers n{x) is bounded, the same conclusion holds.

1. Introduction. For an element a of a ring R, the mapping da: x —* ax — xa of R

into itself is a derivation, the inner derivation determined by a.

In terms of derivations, Herstein's hypercenter theorem [1] states that if R is a

ring with no nonzero nil ideals and a E R is such that da(x") = 0, n = n(x) > 1,

for all x E R, then da = 0. A natural question related to this result is the following:

If R is a ring with no nonzero nil ideals and d is an arbitrary derivation of R

such that d(x") = 0, n = n(x) > 1, for all x E R, can we conclude that R must be

rather special or d = 0?

Of course, one cannot expect that d will always be 0. In fact, if AT is a

commutative domain of characteristic p > 0, and d is the usual derivation on the

polynomial ring K[X], then d(f) = 0 for all/ G K[X], but d ^ 0.

In this paper we show that if 7? is primitive and d i= 0 is a derivation of R such

that d(x") = 0, n = n(x) > I, for all x E R, then 7? is an infinite field of character-

istic/? > 0 wherep\n(x) if d(x) =£ 0. Moreover, if 7? is prime and the integers n(x)

have a finite maximum as x ranges over 7?, the same conclusion holds.

2. The case R is prime with nontrivial idempotents. We begin with

Lemma 1. Let R be aprime ring with an idempotent e ¥=■ 0, 1. If d is a derivation of

R such that d(e + ex — exe) = 0 for all x E R, then d = 0.

Proof. Set ex = e, e2 = 1 — e (formally) and IL = e¡Rej. The given condition

implies d(ex) = 0, so d(e2) = 0 and d(Rx2) = 0. Hence, d(R¡¡) = d(e¡RijeJ) =

eid(R¡J)ej E Rtj. Thus, since d(Rx2) = 0, we have

0 = d(Rx2R2xRX2) = Rx2d(R2X)RX2 = exRd(R2X)Re2

and the primeness of R forces d(R2X) = 0. Finally from 0 = d(RiiRiJ) = d(Rii)RiJ =

d(R¡¡)Rej we obtain d(Ru) = 0. Since 7? = 27?,y and d is additive we conclude that

d = 0.
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As an immediate consequence we have the following:

Corollary. Let R be a prime ring with nontrivial idempotents. If d is a derivation

of R such that d(x") = 0, n = n(x) > 1, for all x E R, then d = 0.

Proof. Let e be a non trivial idempotent in R. If x E R, then, as is quickly

checked, / = e + ex — exe is an idempotent. Hence, d(f) = d(f"<-f)) = 0 and the

result follows.

3. The case 7? is primitive. In order to settle the primitive case we need the

following:

Lemma 2. Let A be a division ring with a derivation d ^ 0 such that d(x") = 0,

n = n(x) > I, for all x E A. Then A is an infinite field of characteristic p > 0 where

p\n(x) if d(x) ¥= 0.

Proof. Let A be the subring of A generated by all xn(jc) where x E A and

d(xn(x)) = 0. Since d(A) = 0 and d ¥= 0, we have that A ¥- A. By a result of Faith

[2], A is commutative. Hence, nx"~xd(x) = d(x") = 0, n = n(x) > 1, for all x E A.

Since d =£ 0, we conclude that A is of characteristic/? > 0 (andp\n(x) if d(x) ^ 0).

Thus, d(xp) = 0 for all x E A. If A is finite then all its elements are pth powers,

forcing d = 0. Therefore A is infinite and the lemma is proved.

We now settle the primitive case.

Theorem 1. Let R be a primitive ring with a derivation d ¥= 0 such that d(x") = 0,

n = n(x) > I, for all x E R. Then R is an infinite field of characteristic p > 0 where

p\n(x) ifd(x)¥=0.

Proof. Since 7? is primitive, it is a dense ring of linear transformations on a

vector space V over a division ring A. If for some x ^ 0, in 7?, dimA Vx = 1 (i.e., x

is of rank one), then R has a minimal right ideal. So, either R has nontrivial

idempotents or 7? is a division ring. By the corollary to Lemma 1, the first

possibility leads to d = 0, contrary to our assumptions. Thus, R is a division ring

and, by Lemma 2, the result follows. In other words, we may assume that

dimA Vx > 1 for all x E R.

Let x =£ 0 be in R and suppose that, for some v E V, vd(x) and vx are linearly

independent over A. By the density of the action of R on V, there exists v £ R with

vd(x)y = 0 and vxy = v. Let n, m > 1 be such that d((yxf) = d((xy)m) = 0.

Then, if ¿ = nm, d((yx)k) = d((xy)k) = 0 and consequently

d(x)( yxf = d{x(yx)k) = d{(xyfx) = (xyfd(x).

So, 0 = vd(x)(yx)k = v(xy)kd(x) = vd(x), a contradiction. Thus, given v E V,

vd(x) = X(v)vx where X(v) E A.

Let v, w E V be such that vx and wx are linearly independent over A. Since

vd(x) = X(v)vx, wd(x) = X(w)wx and (v + w)d(x) = X(v + w)(v + w)x, we ob-

tain

(X(v) - X(v + w))vx + (X(w) - X(v + w))wx = 0.
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By the independence of vx and wx over A we conclude that X(v) = X(v + w) =

X(w). Since X is constant on these independent elements, and since dimA Vx > 1,

we get X(v) = A, X independent of v, for all v E V.

Thus, v(d(x)x) = (vd(x))x = (Xvx)x and v(xd(x)) = (ux)t/(x) = (Xvx)x; so,

u(rf(x)x - xd(x)) = 0 for all v E V. Since 7? acts faithfully on V, we have

d(x)x = xd(x) for all x E 7?.

Let x,y E R and let « > 1 be such that d(y") = 0. By the above,

d(x + yn)(x + y") = (x + y")d(x + y")   and   d(x)x = xd(x).

These yield d(x)y " = y "<7(x). By the hypercenter theorem, i/(7?) C Z, the center of

R.

Now, since d ¥= 0, there exists an x E 7? such that d(x) =£ 0. By hypothesis,

d(xy") = i/(x)y", n = «(y) > 1, for all y E R. Since 7? is prime, d(R) Ç Z and

d(x) t* 0, we conclude that yn(>,) E Z for all y E 7?. By the hypercenter theorem, R

is commutative. By Lemma 2 the result follows.

4. The case 7? is prime. In this section we prove the result for prime rings stated

in the introduction. To this end we need the following:

Lemma 3. Let R be a prime ring and d ¥= 0 a derivation of R. Suppose that

d(x") = 0 for all x E R, where n > 1 is a fixed integer. Then R satisfies a

generalized polynomial identity.

Proof. Suppose first that, for all x E R, x and d(x) are C-dependent where C is

the extended centroid of R. Then xd(x) = d(x)x, and replacing x by x + y " we get

y"d(x) = d(x)y" for all x,y E R. If, for some a E R, d(a) is not central then

f(X) = X"d(a) - d(a)X" is a nontrivial GPL Thus we may assume d(R) Ç Z, the

center of 7?. Let x,y E R. If d(x) =£ 0 commute x with d(xy) = d(x)y + xd(y) to

get d(x)(xy — yx) = 0; since 7? is prime this forces xy — yx = 0, i.e., x E Z. If

d(x) = 0 then d(xy) = xd(y) E Z and choosing y with d(y) =£ 0 we again have, by

the primeness of 7?, that x E Z. Therefore 7? is commutatiwe and we are done.

Suppose now that a and d(a) are C-independent for some a E R. Let x E R;

then by hypothesis, d(a)(xa)n = d(a(xa)n) = d((ax)"a) = (ax)"d(a). By a standard

linearization process, we obtain

2  d(a)xamaxai2)a ■ ■ • ax^ya =   2  «**9**.c»«» ' ' ' "^„¿(a)
aes„ oes„

where xx, . . . , xn E R and S„ is the symmetric group of degree n. Let Xx, . . . , Xn

be noncommuting indeterminates. Set

f(Xx, . . ., Xn) =   2  ^(0)^0(1)^(2) • • • aXain)a - aX^yaXjz, ■ ■ ■ aX^n)d(a).
o(=S„

Then / is a generalized identity satisfied by 7?. If it is trivial, we get

d(a)XxaX2a • • • aXna — aXxaX2a • • ■ aX„d(a) = 0 for these are the only mono-

mials in / containing the X's in this order. Fixing values for X2, . . . , Xn in 7?, and

using a result of Smith [5, Lemma 3] we have that a and d(a) are C-dependent, a

contradiction. Therefore/is nontrivial, and the lemma is proved.
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Before proceeding we show that one can extend a derivation from a prime ring

to its central closure. This is

Lemma 4. Let R be a prime ring with a derivation d, and let S = 7?C be the central

closure of R. Then we can extend d in a unique way to a derivation on S.

Proof. Lets E S; then j = [ £/,/], where U ¥= 0 is an ideal of R and/: £/-> R is

a right 7?-module map. Set d(s) = [U2, d(f)] where

(*) d(f) = d(f(x)) - f(d(x)),       xEU2

(note that d( U2) E U). It is easy to check that d(f) is a right 7?-module map of U2

into R. If s = 0, then / = 0 on some ideal W =£ 0 of R where W EU; hence,

d(f) = 0 on W2 and consequently d(s) = 0. Now, if /is a bimodule map of U into

7?, then d(f) is also a bimodule map of U2 into 7?; thus d(C) Ç C follows.

Moreover, d(rc) = d(r)c + rd(c) for r E R, c E C Therefore

</(2>,c,) = Zd(r,}c, + 2r,.¿(c;),       /-,. E R, c,- E C,

defines a derivation on 5 extending that of 7?. The uniqueness follows immediately

from (*).

We are now in a position to prove

Theorem 2. Let R be aprime ring with a derivation d =£ 0 such that d(x") = Ofor

all x E R, where n > I is a fixed integer. Then R is an infinite commutative domain

of characteristic p > 0 where p\n.

Proof. Let S = RC be the central closure of R. By Lemma 3, R satisfies a

generalized homogeneous multilinear identity. Therefore S satisfies this same

generalized identity. By Martindale's theorem [4], S is a primitive ring containing a

minimal right ideal eS, e2 = e, and A = eSe is a division algebra finite dimensional

over C. Moreover, by Lemma 4, we can extend d to a derivation on S, which we

shall also denote by d.

We claim that d(e) = 0.

In fact, let U =£ 0 be an ideal of R such that eU Q R. Let u E U; since e2 = e,

by our hypothesis on d, d(e)(euf = d(e(eu)") = d((eu)n) = 0. If d(e)e ^ 0, then,

by the density of the action of S on Se, there exists ans E S with sd(e)e = e. So,

0 = sd(e)(eu)n = sd(e)e(ue)"'lu = e(ue)"~lu = (eu)n.

That is, eU is a nil right ideal of 7? of bounded index of nilpotence. By a result of

Levitzki [3, Lemma 2.1.1], this is not possible in a prime ring unless eU = 0, in

which case e = 0. Therefore d(e)e = 0. Thus, since d(e) = d(e2) = d(e)e + ed(e),

we have d(e) = ed(e) E eS.

Suppose d(e) =£ 0. Then d(e) and e are linearly independent over A (for other-

wise, d(e) = Xe, X E A; so, 0 = d(e)e = Xe2 = Xe and consequently d(e) = 0).

Hence, by the density of the action of S on eS, there exists an s E S with d(e)s = e

and es = 0. Let U ¥= 0 be an ideal of R such that .st/(e) U E R and let u E U. Since

es = 0, <í(e)j = e and e<7(e) = t/(e), we have

0 = d(e)(sd(e)u)" = d(e)s(d(e)us)"~ld(e)u

= e(^(e)t*s)"_1¿7(e)« = (d(e)us)"~1d(e)u;
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thus, (sd(e)u)n = 0. That is, sd(e)U is a nil right ideal of R of bounded index of

nilpotence. As before, this forces sd(e) = 0. Therefore d(e) = ed(e) = (d(e)s)d(e)

= 0, and the claim is established.

Now, let x E S. Then / = e + ex — exe is an idempotent; moreover, / =^= 0 for

otherwise e = fe = 0. By the minimality of eS, we have fS = eS and so, by the

argument used above, d(f) = 0. Since d ¥= 0, by Lemma 1 we conclude that e = 1.

Hence S is a division ring finite dimensional over C and every element in S is of

the form az~x where a E R, z ¥= 0 is in the center of 7? [3, Theorem 1.4.3]. Thus

the condition d(x") = 0 holds in S and, by Lemma 2, the result follows.

Finally, let 7? be a prime ring with a derivation d ^ 0 such that d(x") = 0,

n = n(x) > 1, for all x E R. Suppose further that the integers n(x) have a finite

maximum, N, as x ranges over 7?. Then, from the derivation properties, d(xNX) = 0

for all x E R and the conclusion of the above theorem holds.

Note. As the referee pointed out to us, the process of extending derivations to the

central closure (and even larger rings of quotients) has been done previously by

others, e.g. Kharchenko (Differential identities of prime rings, Algebra i Logika (2)

(1978), 220-238) and Kovacs (Idempotent derivations of prime rings, Technion

preprint series no. MT-447, Haifa, Israel, 1979).
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