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VIEW-OBSTRUCTION PROBLEMS. U

T. W. CUSICK

Abstract. Let S" denote the region 0 < x, < oo (i — 1, 2,..., n) of /i-dimen-

sional Euclidean space E". Suppose C is a closed convex body in E" which

contains the origin as an interior point. Define aC for each real number a > 0 to

be the magnification of C by the factor a and define C + (mx, . .., m„) for each

point (m¡.m„) in E" to be the translation of C by the vector (mx, . . ., mj.

Define   the   point   set   A(C, a)   by   A(C, o) = [aC + (m, + {.m„ + 2):

M|, . . ., m„ nonnegative integers}. The view-obstruction problem for C is the

problem of finding the constant K(C) defined to be the lower bound of those a

such that any half-line L given by x¡ = a¡t (i = 1, 2, ..., n), where the a, (1 < i <

n) are positive real numbers, and the parameter t runs through [0, oo), intersects

A(C, a).

The paper considers the case where C is the «-dimensional cube with side 1, and

in this case the constant K(C) is known for n < 3. The paper gives a new proof for

the case n = 3. Unlike earlier proofs, this one could be extended to study the cases

with n > 4.

1. Introduction. The view-obstruction problems defined in the abstract were first

introduced in [2]. In this paper we only consider the case where the closed convex

body C in E" is the «-dimensional cube with side 1. We use the notation X(«) for

the constant K(C) in this case.

For any real number x, let ||x|| denote the distance from x to the nearest integer.

The evaluation of X(«) can be thought of as a problem in Diophantine approxima-

tion, since we have

\X(n) = sup   min     max   llvvoc—4||,
0<x<l    \<i<n

where the supremum is taken over all «-tuples wx, . . ., wn of positive integers. If we

define

(1) k(«) = inf   max     min   ||w,oc||,
0<x<l    \<i<n

where the infimum is taken over all «-tuples wx, . . ., wn of positive integers, then

since ||w,x|| =\ — \\w¡x — |||, we have X(n) = 1 — 2k(«) for each « > 2. It will be

convenient in the rest of the paper to concentrate on the problem of evaluating

The problem of evaluating \(«) is equivalent to the following: Suppose the unit

cube in E" has faces which reflect a certain particle, and consider any motion of

the particle, starting in a corner of the cube and not entirely contained in a

hyperplane of dimension « — 1. What is the side length of the largest subcube,
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centered in the unit cube, with the property that there exists such a motion of the

particle which does not intersect the subcube? Plainly the largest such side length is

X(«).
The corresponding problem, if the condition that the particle start in a corner is

omitted, can be treated by methods entirely different from those in this paper. This

has been done by I. J. Schoenberg [4], who solved this problem in every dimension;

he showed that the largest subcube in dimension « has side 1 — it"1.

The natural conjecture for the value of X(«) is (« — l)/(« + 1) (as stated in [2, p.

166]). This is because Dirichlet's box principle gives max0<x<1 min1<I<n ||/x|| =

l/(« + 1), so k(«) < l/(« + 1), and it is reasonable to conjecture that equality

holds. It is this conjecture that is proved in this paper for « < 3.

The case « = 2 is very simple. The case « = 3 is considerably more complicated,

but several proofs have previously been published (Betke and Wills [1], Cusick [2,

3]), and another one is given here. The proof in this paper, unlike the earlier proofs,

has the advantage that it can be extended to study the cases with « > 4; however,

the argument is then no longer elementary. The author hopes to return to this

question elsewhere.

2. Another proof that k(3) = \. By (1), in order to show that k(«) = l/(« + 1) it is

enough to prove that given any «-tuple wx, . . . , wn of positive integers with the

property that, for any integers m and q,

(2) \\w¡q/m\\ < 1/ (« + 1)   for some /, 1 < / < n,

there exists some pair m, q such that (2) does not hold if < is replaced by < .

If we assume (as we may with no loss of generality) that w„ . . ., wn have no

common prime factor, then we would expect that there are only finitely many

«-tuples wx, . . . ,w„ such that (2) holds for any m and q. Further, we might hope

that by considering only finitely many values of m, we could identify all of these

«-tuples, and so reduce the determination of «(«) to a finite calculation. It is easy to

carry out this procedure when « = 2, and so prove k(2) = j. In the remaining

portion of this paper, we show that the procedure can also be successfully carried

out when « = 3.

For the rest of this section, we take « = 3 and suppose wx, w2, w3 is a triple of

integers, having no common prime factor, such that (2) holds for any integers m

and q. Our goal is to show that we can always find a pair of integers m and q such

that

(3) r3»3lh*||*4-.

If w is odd, then ||-f || = \, so we can assume that at least one of the wx is even. It

is easy to prove that (3) holds if exactly two of the w, are even. First suppose that

wx = 2ka, w2 = 2kb and vv3 = c, where a, b, c are odd and k is > 1. If we take

m = 2k+x and choose q to be any odd integer such that qc = 2k + 1 mod 2k+x,

then (3) holds. Next suppose that w, = 2J+ka, w2 = 2kb and w3 = c, where a, b, c

are odd and j, k are  > 1. We take m = 2J+k+x and will take q to be odd, so



VIEW-OBSTRUCTION PROBLEMS 27

||w:^/w|| =5. In order to specify q, we first choose an odd q0 such that bq0 = t

mod 2J+l, where t is an odd integer satisfying ||r/2/+1|| > 5. We define q to be

q0 + 2j+ V, where r is chosen so that ||»v3^ || > \ (such a choice of r is possible since

changing r by 1 changes || w3-£ || by ||c/2*||). With this choice of q, (3) holds.

Now we suppose that exactly one of the w, is even, say w, = 2ka, w2 = b,w3 = c,

where a, b, c are odd and A: is > 1. For this case we need the following elementary

lemma.

Lemma 1. For u any odd integer and « any integer > 3, define S„(u) = S(u) =

{least positive residues mod 2" of odd t satisfying \\tu/2"\\ > ~). Then for any pair u,

v such that 1 < u, v < 2"~x, we have

(4) S(u) u S(v) = {all odd t mod 2"}

if and only if u + v = 0 mod 2"~ '.

Proof. The "if" part of the lemma is clear, since u + v = 0 mod 2"~x and

1 < u, u < 2"-' means « + u = 2"~x, so ||iw/2"|| = ||(2"_1 - t)v/2n\\. Since t

belongs to S(u) if and only if 2"~x — t does not belong to S(u), we have (4).

To prove the "only if" part of the lemma, it is enough to show that S(u) = S(v)

cannot happen if u ^ v and 1 < u, v < 2"~x; for if (4) holds with 1 < u, v < 2"~l,

then S(2"~x - v) = S(u). Define

M = {odd m satisfying 2"-2 < m < 3 • 2"~2},

so r is in S(u) if and only if ru = m mod 2" for some «1 in M. Thus SX«) = S(t>)

means that the set M is unchanged when the elements of M are multiplied by u~xv

and reduced mod 2"; we use the notation u~lvM = M for this. We prove that if x is

any integer such that xM = M, then x = ± 1 mod 2". This will complete the proof

of the lemma; for then S(u) = S(v) implies either u~xv = -1 mod 2" (so u + v = 0

mod 2", which is impossible if 1 < u, v < 2"~x) or w"'t> = 1 mod 2" (so « = v).

So we suppose xM = M with 1 < x < 2". Clearly this implies x'M = M for

each /' = 1,2,.... Let d be the order of x mod 2"; note <7 is even since d > 1 and

rf divides fK2") = 2"~x. We have (xd/2)2 = 1 mod 2", and the roots of y2 = 1 mod

2" for n > 3 are>> = 1, -1, 2"' ' + 1 or 2"~x - 1. We cannot have xd/2 = 1 mod 2"

(this contradicts the definition of d) or xd/2 = 2"~ ' ± 1 mod 2" (for then xd/2M =

A7, but the element xd/2(2"~x ± 1) = 1 is not in M-contradiction). Hence xd/2 =

-1 mod 2"; if d is divisible by 4 this is impossible because v2 = -1 mod 2" has no

solutions. Hence d = 2, so x = -1 mod 2" and the proof is complete.

Now we turn to the proof of (3) for wx = 2ka, w2 = b, w3 = c. We will choose q

odd and m equal to either 2k+x or 2*+2, so we may assume without loss of

generality that 1 < b, c < 2k+x. First suppose that m = 2k+2. If we can find an

integer q such that q belongs to both Sk+2(b) and Sk+2(c) (using the notation of

Lemma 1), then (3) holds. If no such q exists, then by Lemma 1 with « = k + 2 we

have b + c = 0 mod 2k+x. This means Sk+X(b) = Sk+X(c), so if we choose q to be

any integer in Sk+X(b) and take m = 2k+x, then (3) holds. This finishes the proof

that»c(3)=i.
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