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AN ALGEBRAIC PROOF OF THE

BORSUK-ULAM THEOREM FOR POLYNOMIAL MAPPINGS

MANFRED KNEBUSCH1

Abstract. An algebraic proof is given for the following theorem: Every system of n

odd polynomials in n + 1 variables over a real closed field R has a common zero on

the unit sphere S"(R) C Rn + l.

In [1] Dai, Lam, and Peng prove the remarkable theorem that for any natural

number n the quotient

An(R) := R[A-,.Xn]/(l + X2 + ■ ■ ■ +X2)

of the polynomial ring R[XX, . . . , Xn] has level n, i.e. -1 cannot be written as a

sum of less than n squares in this ring. Besides an ingenious algebraic manipula-

tion, their proof uses the following theorem.

Theorem 1. Let qx, . . ., qn_x be polynomials in R[A"„ . .. , X„] which are odd, i.e.

qj(-Xx, . . . , -Xn) = -qj(Xx, . . . , Xn) for 1 < j < H — 1. Then these polynomials

have a common zero on the unit sphere S"~x C R".

This theorem is equivalent to

Theorem la. Let gx, . . . , gn_x be polynomials in R[XX, . . . , Xn\. Then there exists

some point a in S"~x with gj(-a) = gj(a) for 1 < j < n — 1.

Hint. Write every gj as a sum of an even and an odd polynomial.

Theorem la is a special case of the well-known Borsuk-Ulam theorem, which

states the same for continuous functions g¡ on S"~x instead of polynomials. It is

this highly nontrivial fact from algebraic topology that Dai, Lam, and Peng refer to

in their proof that An(R) has level n. In order to eliminate the topological argument,

I shall give in this note a purely algebraic proof of Theorem 1.

Lam has shown me the proofs of many other algebraic results on sums of squares

and higher powers, partially announced in [1], which he and his collaborators

gained by topological methods. Up to now I know of no way to prove any of these

results algebraically.

As an algebraic proof should do, our proof of Theorem 1 will work equally well

for any real closed base field R instead of R. Then the arguments of Dai, Lam, and

Peng yield, without use of Tarski's principle or similar considerations, that every

ring An(R) has level n.
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Thus we are now given odd polynomials qx, . . ., qn_x in R[XX, . . ., A'J of total

degrees dx,. . ., d„_x (odd numbers), and we have to look for a common zero of

these polynomials on the sphere

S"-\R):= {(x„ . . . , xj G R"\x2 + ■ ■ ■ +x2=l}.

This needs some preparations. Let C be the algebraic closure R(V^-Î ) of R. For

any odd number d we denote by F(d) the vector space over C consisting of all

forms / in C[X0, . . . , Xn] of degree d which only contain monomials

X£°Xxa' • • • X* with a, + • • • +a„ odd. We fix odd numbers dx, . . . , d„_x and

introduce the vector space

F := F(dx) X ■ ■ ■ XF(dn_x).

Notice that the homogenizations <?,*, . . . , q*_x of the polynomials qx, . . ., q„_x

above yield a point (q*, . . . , q*_,) in this space F. Let V denote the quadric

Xq - x\ - ■ • ■ - x2 = 0 in the projective space P"(C). The sphere S"~X(R) will

be identified with the set V(R) of real points of V in the usual way. We introduce

the closed subvariety X of F X V, consisting of all points (/„ . . . ,f„-X;

x0:xx: ■ • • :x„) with^(x0, x,, . . . , x„) = 0 for 1 < j < n — 1, and we finally intro-

duce the natural projection it: X —» F. Notice that it is a projective morphism

defined over R. For every point (/,, . . . ,/„_i) G F the fibre it reads as follows:

*-'(/,> • • • >/„->) = {(/i, • • • ,/„-,)} X Zv(fx, . .. ,/„_,)

with ZK(/,,. .. ,/„_i) the set of common zeros of the forms/,,.. . ,/„_, in V.

We compute this fibre for some special points of F. We choose finite sets

Sx, . . ., S„_x in R consisting of dx, d2,. . . , dn_x elements respectively. We con-

sider the point

p(Sx, ...,Sn_x):=(  u  (AT, - aXn), ...,     U    (Xn_x - aXn)\
Ues, iiês,.| /

of F. (Notice that the variable Xn is absent here!) Clearly

v~l(p(S\> ■ ■ -, S„-\)) = {p(Sx, ■ ■ ■ , Sn_x)}

X {(±^l + aî+ • • • +a2n_x:ax: ■ ■ ■ :an_,:l)|a, G Sx, . . ., a„_x G S„_,}.

Thus this fibre contains precisely 2dx • • • d„_x points. They happen to be all real.

Let Ü denote the set of all points p of F with finite fibre ir~x(p). By general

principles from algebraic geometry U is Zariski open in F, and in our case U is

defined over R and nonempty. The restriction tt~x( t7) -» Ü of it is a projective

morphism with finite fibres, hence a finite morphism. By Bezout's theorem every

fibre tt~x(p) with p G U contains at most 2dx • • • dn_x elements. We have seen

above that there exist fibres with precisely this cardinality. It is now clear from the

general theory of finite morphisms that the set

U := {p G Ü\C&rd(TT-\p)) = 2dx • ■ ■ dn_x)

is Zariski open in Ü and defined over R. (It is the complement of the "discriminant

hypersurface" in U.)
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We now look at the closed subvariety Y := X n (F X W) of X with

W := {(0:x,: • • • :xn)\x2 + • • • +x2 = 0}. Since tt is projective and defined over

R the image ir(Y) is a closed subvariety of F defined over R. (ir(Y) may be

reducible.) Clearly no one of the pointsp(Sx, . . ., Sn_x) from above lies in w(Y).

Thus certainly ir( Y) ¥= F.

We denote by Fx the Zariski open subset of F, defined over R, which consists of

all points (/„ .. . ,/„_,) with fj(0, Xx, .. ., X„) ̂  0 for 1 < j < n - 1. This space

Fx will be identified via dehomogenization with the space of all systems

(c7,, . . ., q„-X) of odd polynomials qx, . . ., qn_x in C[XX, . . ., Xn] of total degrees

</,,...,</„_, respectively.

We introduce the Zariski open subset Ux := Fx n U r\(F \ \p( YJ) of Fx which is

defined over R. Since F is an irreducible variety, in fact a vector space, Í7, is

certainly nonempty. For every point/» = (qx, . . . , ç„_i) of Ux all common zeros of

the homogenizations q*, . . ., q*_x on V have first coordinate x0 =?*= 0, since p G

\p(Y). Thus they are the points (\:ax: • ■ ■ :a„) with qj(ax, . . . , an) = 0 for 1 < j <

n — 1 and a2 + • • • +a2 = I. We know from above that for every p G Ux there

exist precisely 2dx • ■ ■ d„_x such points. Thus we have arrived at the following

lemma.

Lemma. Let dx, . . ., d„_x be fixed odd numbers and let Fx denote the space of all

systems (qx, . . ., q„-X) of odd polynomials qj in C[XX, . .., Xn] of total degrees d,

(1 < j < n — 1). Then there exists a nonempty Zariski-open subset Ux of Fx, defined

over R, such that every system (qx, . .., q„-X) G Ux has precisely 2dx ■ • • d„_x

common zeros on the "complex sphere"

S"-\C) := {(x„ . . . , x„) G C'\x\ + ■ ■ ■ x2 = 1}.

We now enter the proof of Theorem 1. We look at the set FX(R) of all systems

(qx, . . . , q„_x) of odd polynomials pj in R[XX, . . ., Xn] of degrees dj. Identifying

every q¡ with the tuple of its coefficients we regard FX(R) as a Zariski open subset

of some vector space RN. We work with the strong topology of RN, which stems

from the ordering of the field R. The set FX(R) is open in RN, also in this topology.

Suppose there exists some system (q°, . . ., q°_,) G FX(R) which has no common

zero on the real sphere S"~X(R). The polynomial (q^2 + • • • +(q°_x)2 attains on

S"~X(R) its minimum (cf. [2, §9] for an algebraic proof in the spirit of this paper).

Thus ql(x)2 + • • • +q°_x(x)2 > e for some e > 0 in R and every x G S"~x. It is

now clear that there exists a euclidean open ball B in RN with center

(q°, . . ., q°_x) and contained in FX(R) such that

c7,(x)2+- • • +qn_x(x)2>0

for every (qx, . . ., q„_x) G B and every x G S"~X(R). This means that no system

(qx, . . . , q„_x) G B has a common zero on S"~X(R). The semialgebraic set B has

dimension N, but FX(R) \ UX(R), with £/, from the lemma, has dimension at most

N — 1 (cf. [2, §8] for the dimension theory of semialgebraic sets over R). Thus

B n UX(R) ̂  0. We now choose some system (qx, . . . , q„_x) efin UX(R) and
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consider the set

Z := {a G S-x(C)\qx(a) =-. q„_x(a) = O}.

By the lemma above Z has the cardinality \Z\ = 2dx • • • dn_x. Since

(qx, . . ., q„_x) G B the intersection Z n S„_X(R) is empty, i.e. Z contains no real

points.

For every point a of Z the complex conjugate point ä lies again in Z, since the

polynomials £7y have real coefficients. Also the antipodal point -a lies in Z, since

the qj are odd. Thus the Kleinian four-group G = {1, a, t, ot} acts on Z via

a(a) = ä, r(a) = —a. I claim that the action of G is free of fixed points. Of course

r(a) 7^= a for every a G Z. Also a(a) 9* a for every a G Z, since Z does not contain

real points. Assume that ar(a) = a for some a G Z. This means cz = -a, i.e. that

the coordinates ax, . . . , an of a are all purely imaginary. But this is impossible

since a2 + • • • +a2 = 1. Thus the action of F is indeed free. This implies that 4

divides |Z|, which is the desired contradiction, since \Z\ = 2cf, • • • dn_x is only

divisible by 2. Theorem 1 is proved.
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Addendum (February 1981). Leaving the cadre of pure algebra it is of course

possible to deduce from Theorem 1 or Theorem la immediately the full Borsuk-

Ulam theorem. One simply approximates the given continuous functions on the

sphere by polynomials by use of the Stone-Weierstrass theorem, as has been

pointed out to me by several colleagues. The situation here is slightly unsatisfactory

if the base field R is replaced by a nonarchimedian real closed base field R. Then

the Borsuk-Ulam theorem can still be established for continuous semialgebraic

functions instead of polynomials by copying the classical proof, replacing the

singular homology by "semialgebraic homology" (Thesis of Hans Delfs, Regens-

burg 1980). But the Stone-Weierstrass theorem is known to be wrong over a

nonarchimedian real closed base field. Thus our algebraic proof does not yield the

full semialgebraic Borsuk-Ulam theorem in such a simple way.
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