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NORMAL FAMILIES OF QUASIMEROMORPHIC MAPPINGS

RUTH MINIOWITZ1

Abstract. We obtain several sufficient conditions for a family of quasiregular or

quasimeromorphic mappings to be normal, which are generalizations to known

results for analytic functions.

1. Introduction. Zalcman in [Z] formulated a heuristic principle in Complex

Function Theory that yielded simple proofs to some of Montel's theorems concern-

ing normal families.

Here we generalize Zalcman's result to the Theory of Quasimeromorphic Map-

pings. We obtain several sufficient conditions for a family to be normal. We also

obtain some n-dimensional versions of known theorems for analytic functions.

2. Preliminaries. We consider quasiregular and quasimeromorphic mappings

/: D —»R" where D is a domain in R" or in R" and n > 2. We shall use the same

notations and terminology as in [MRV1, MRV2, MRV3].

For the definitions and main properties of quasiregular and quasimeromorphic

mappings, as well as related material, we refer the reader to those papers.

2.1. Normal families. A family <$ of AT-quasimeromorphic mappings in a domain

D C R" is called normal, if every sequence {fm) c ^ has a subsequence that

converges uniformly, in the spherical metric, on every compact subset contained in

D.

The spherical distance q(a, b) between two points a, b G R" is defined by

q(a, b) = \a- b\(\ + \a\2)'"- (l + \b\2)~K       a, b G R",

q(a, oo) = (1 + |tf|2p-

3. A necessary and sufficient condition for normality.

Theorem 1. Let S" be a family of K-quasimeromorphic mappings in a domain D,

D Ç R", n > 2. Then *$ is a normal family if and only if for each compact subset E

of D there exists a finite number M such that

q(f(xx),f(x2))<M(q(xx,x2))a

for each xx G E, x2 G D and f G f where a = (A7)1/(1_n).
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Proof. The sufficiency is clear, since it implies equicontinuity at each point, and

by Ascoli's theorem, equicontinuity implies normality. For the necessary part,

suppose % is a normal family in D, and x0 be any arbitrary point in D. As ^ is

normal it is equicontinuous at x0, and consequently there exists a positive number

8 < 1, such that q(x, x0) < 8 is contained in D and q(fix), f(x0)) < 1 whenever

q(x, x0) < 8 and / G 5". Let T be a Möbius transformation that corresponds to a

rotation of the Riemann sphere, that maps x0 to the origin, and denote by T""1 its

inverse mapping. T maps the neighborhood q(x, x0) < 5, onto a ball B"(0, r),

r < 1. For each/ G Sr, we denote by U a Möbius transformation that corresponds

to a rotation of the Riemann sphere that takes /(x0) onto the origin. The mappings

v = U ° f ° T~x are AT-quasiregular in T(D). As U corresponds to a rotation of the

Riemann sphere, we have |u(f)| < 1 whenever |f| < r. By [MRV2, 3.4] we can get

that if |£,| < r/2, |f2| < r/2,

ba,)-t)a2)i<(2An/(r-^)a)if1-f2|«

where A„ is a constant that depends only on n, X„ > 1, and a = (A7)1/(1-n). Thus

Kfi) - ttM < M0|í, - J2|«

where M0 = 2a+xXn/ra depends on x0, n and K. In the ball |f | < r we have

ij(n_    Ki        ¿in
*<r) - o + im> o + ,v

thus

If, - Í2I
?tti, fa) >

(1 + r2)

Therefore for each |f,| < r/2, |f2| < r/2

WW - v(Q\ < A/0(l + r2)a(q({x, f2))a,

or

q(Axù,AxJ) = ?(«(fi), P^?)) < I»(íi) - v(£2)\

< M^(q(U, £2))" = M¿(q(xx, x2))a

for each/ G *§ and each x„ x2 in c7(x, x0) < 8'.

Let E be any compact subset of D, for each p G if there exist constants /c^ and

A/, such that q(f(xx), fixj) < M/^x,, x^)" whenever £7(*i,P) < kp, q(x2,p) < kp

and/ G •#. The rest of the proof is the same as [VI, Theorem 1].

Remark. For plane quasimeromorphic mappings Theorem 1 is known, see [VI,

Theorem 1].

4. The main lemma.

Lemma 1. A family ty of K-quasimeromorphic mappings in the unit ball B" is not

normal if and only if there exist

(a) a number 0 < r < 1,

(b) points xm, xm in B"(r),
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(c) mappings f„ G f,

(d) numbers pm —» 0+,

such that

(*) L(xm + pj)^g(n

spherically uniformly on compact subsets of R", where g is a nonconstant quasimero-

morphic mapping.

Proof. Suppose S is not normal on B", then it is not normal on some compact

subset that is contained in B"(r*), r* < 1. By Theorem 1 there exist two sequences

of points x* and y* in B"(r*) and a sequence/m G S such that

^(fjx*),fm(y*))
lim

"~"      q(x*,y*)a

It should be noted that a < 1.

Fix r, r* < r < 1 and let

\x\2\q{fm{x),fm(y)

l(x,y)a

= +oo,     « = (a:)'a"-1).

Mm= sup(l-J^)-
1*1 «/-V r¿ /

- fr\i/0-»)a = (K)

\y\<r

It is clear that Mm —>■ oo.

Let xm and>>m be sequences such that

q(fm(xm), fm(yj)

q(xm,ym)a

and let gm(f) = fm(xm + pm$), where

/       \xm\2 \      Mm

p^ =
q(xm,yj°

q(fm(xm),fm(yj)

As p£ < (2/Mm)(l — \xm\2/r2) it follows that pm-»0 as m-*cc. The mappings

gm(Ç) are defined for |f | < Äm where Äm = (r - |xj)/pm. As

Ä„ r -   x„

2(r + |xJ)p¿-°      4P:-«
^ - —:- ^5s

rlM„ rM„

and a < 1, it follows that Rm —> oo as m —> oo.

We shall show that {gm} is a normal family. Take f„ f2 such that |f,|, |f2| < Ä

and choose R < Rm and |xm + pmf,| < r, i = 1, 2. Then using the definition of A/m

we get

qJgMàgJQ) ^ Pm(i + R2r<i(fm(xm + Pjx),fm(xm + Pj2))
*(£., Qa

\(xm + pji) - (xm + pj2)\

l(l + \xm + pM2y(l + \xm+pJ2\2y

p»(l + R2)aMm

L      \xm+PmU\2\

\ r2 )
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But as p," < (2/A/J(l - \xm\2/r2) it follows that

g(gm(f')»gm(f2)) {r2 - \xm\2) 2(l        r2

ítti.k)"   '   (r2-\xm + Pjx\2)'

Thus

?(gm(fl)»gm(y)   < ; + ¡jÜ_r - \xm\ 2({  + r2)«

9(f 1. Q" r + l*«l + ÄP»     f ~ lX«l  - RPm

The first factor is bounded by 1; the second factor for fixed R tends to 1 as m

tends to oo. Thus by Theorem 1, {gm) is a normal family. Taking a subsequence, if

necessary, we can assume that gm converges uniformly on compact subsets of R" to

a quasimeromorphic mapping g or a constant. We want to show that g is not a

constant. Take a sequence fm such that xm + pmfm = ym (it is possible as |_ym| < r).

It is easy to check that |fm|a < 2(1 + r2)° and therefore {fm} contains a convergent

subsequence. Thus for that subsequence

q(gm(o),gm(U) _    pZ<i(fm(xm)jm(ym))     (i + ILI2)
2\«/2

9(o, ua     «(wj-(i + i*jt/2 (i + bj2)a/2

(i + \ur/2       (i+my"
(1 4- |xj2)^(l + | vj2)^ (1 + r2)«

Thus

,   y g(g„,(0),gm(L))   > 1

9(0, U" (1 + r2)"'

As gm is a normal family it is equicontinuous at x = 0; then we follow the same

argument as in the proof of Theorem 1. We can find a positive number a such that

|fm| < a and gm(B"(a)) is defined for m large enough. Then we define a sequence

of Möbius transformations Um that correspond to rotations of the Riemann sphere

that takes gm(0) onto the origin. The sequence hm = Um° gm forms a normal family

of AT-quasiregular bounded mappings on B"(a) of Theorem 1. By the definition of

Um and [MRV2, 3.4] we get

g(&.(0).&.(U)     4(Q).UU)-=-
9(0, fj" 9(°.U"

- IUUI 1        <±^^d(hm(B»(a)))(i + IUUI2)1 ^°'^a

where \, is a positive constant that depends on n, and d(A) is the diameter of a set

A. Thus by (*)' it follows that

(1 + r2)a a
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If gm converges to g and g = constant then we can find a subsequence m¡ such that

n converges to h and n s constant. But if limm_>00c/(nm(5',(a))) > 8 > 0, n zi

constant; therefore, g z constant.

For the converse, suppose that 9 is normal in B". By Theorem 1 there exists a

constant M > 0 such that

sup        9(/(*),/O0)<A/
|x|< (1+0/2        <7(*,>T
|y|<(l + r)/2

for all/ G S.

Suppose (*) holds, fix f „ f2 G R", then for large m and |xm + pmf,-| < (1 + r)/2,

i = 1, 2, we get

Pmq(fm(xm + PmÇi)Jm(xm + Pmf2))
< PmM,

q(xm + pjx, xm + Pj2)a

or equivalently,

-.g    _  ^ |,-(1   +  K + Pmíll)        (l  + \Xm + Pj2\ ) <PmM.

Thus

9(gm(?l),gm(?2))    .      „w

Therefore

If, - w

9(g(fi),g(f2))     r    qJgMilgMz))    n
ir, - a-—™    if, - f2r    = a

But as Í, and f2 are any two points in R", it follows that g is a constant (possibly

oo).

5. The heuristic principle. Following the notation of [Z], we write {/,£>} to

denote that the mapping / is defined on the domain D c R", and we distinguish

between mappings {/, D) and {/, D'} if D =££>'. For meromorphic functions the

following theorem was proved by Zalcman in [Z]; the same proof holds for

quasimeromorphic mappings in R", n > 2.

Theorem 2. Let P be a property (that is a family of K-quasiregular or K-quasi-

meromorphic mappings) such that

(i) If{f,D}<EP and D' c D then {/, D'} G P.
(ii) If {/ £>} G P and <b(x) = aT(x) + b, a G R+, T is an orthogonal mapping

and b G R", then {/ ° <f», <t>'x(D)} G P.

(iii) // {fm, Dm) G P where Dx c Z>2 C ■ • • C Dm c . . . , and D = U~_xDm,

ím -*f uniformly on compact subsets of D, then {f, D) G P.

If {/, R"} G P implies that f is a constant mapping, then for every domain D c R"

the family of mappings 'S = {/: {/, D) G P} is normal on D.
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6. Applications. The ability to use Theorem 2 depends on finding conditions that

will force a quasiregular mapping in R" to be a constant mapping. The following

theorem of Rickman's, an n-dimensional version of Picard's Little Theorem, is one

such condition.

Theorem 3 (Rickman [R]). For every integer n > 2 and each K > 1 there exists a

positive integer I = l(n, K) such that iff: R" -h> R" \ [ax, a2, . . ., a¡} is K-quasiregu-

lar and ax, . . . , a¡ are distinct points in R", then f is a constant mapping.

We also need the following lemma, which is an n-dimensional version of

Hurwitz's Theorem.

Lemma 2. Let fm: D ^>R" \ {a} be a sequence of K-quasiregular mappings that

converge uniformly on every compact subset of D to a K-quasiregular mapping f. Then

f is either a constant mapping or n(a,f,D) = 0 (n(a,f D) is the multiplicity

function).

Proof. Suppose that / is not constant and that there exists a point x0 G D such

that /(x0) = a. Let r be a positive number such that U = i/(xo, /, r), the x0

component off~x(B"(fix0), r)) is a normal neighborhood of x0. Such a U exists by

[MRV1, 2.10]. If we choose r sufficiently small, then for m sufficiently large, the

mappings fm are defined on U(x0, f r) and converge uniformly to /. Denote

3i/(x0,/, r) by R, then R is a compact set and as limm_00/m=/, /m( A)—»

S"~x(fix0), r) uniformly. Let Um be the component of R" \fm(R) that contains

/(x0), then p(y,fm, U) (the topological index) is constant for every y G Um, but this

is possible only if p(y,fm, U) = 0 as n(f(x0),fm, D) = 0. But/m(iR) converging to

S"~x(f(x0), r), and/m(x0) converging to/(x0) implies that for sufficiently large m,

p(y>fm' U) > 0 for y G Um. This is a contradiction to p(y,fm, U) = 0. Thus if/is

not constant then n(a,f, D) = 0.

Theorem 4. Let S be a family of K-quasimeromorphic mappings in a domain D,

D C R", n > 2. Let I = l(n, K) be the number guaranteed in Theorem 3. If there

exists a set of different points in R", A = [ax, . . ., al+x) such that f(D) n A = 0 for

all f G S, then S is a normal family.

Proof. Let P be the property "either / is constant or / omits the points

ax, . . . , al+x." It is obvious that conditions (i) and (ii) of Theorem 2 are satisfied.

In order that (iii) be satisfied, we can assume that one of the omitted points is oo

(otherwise let n be a Möbius transformation that maps one point to oo and we

consider the family {h ° f) where / G 'S), (iii) will follow immediately from

Lemma 2. Theorem 3 guarantees that if {/, R"} G P then/is a constant mapping.

Thus we obtain that S is a normal family.

Remarks, (i) For families of AT-quasiregular mappings the point oo is always

omitted so we need only to require that l(n, K) points are omitted in Theorem 4.

(ii) Theorem 4 for analytic functions is known as Montel's Theorem.
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Theorem 5. Let S be a family of K-quasimeromorphic mappings in a domain D,

D Q R", n > 2. Let I = l(n, K) be the number in Theorem 3. Suppose there exists a

positive number e, such that

(1) eachf G S omits I + 1 points ax(f), . . ., al+x(f),

(2) q(ai(f), aj(f)) > e > 0 when i *>j, I < i,j < I + I.

Then S is a normal family.

Proof. The proof will be based again on Theorem 2.

Let P he the property: "/omits / + 1 distinct points ax(f), . . . , al+x(f) such that

q(a¡(f), aj(f)) > e > 0,       i +J,    1 < i,j < / + 1,

or/is a constant." The rest of the proof follows verbatim the proof of the Extended

Montel Theorem in [Z].

We now present an n-dimensional version for Picard's Big Theorem. The proof is

similar to the one in [SZ, pp. 351-352]. Another n-dimensional version for this

theorem can be found in [R]; one can obtain Theorem 6 by the same methods that

are in [R].

Theorem 6. Let f: B" \ {0} —» R" be a K-quasiregular mapping and x = 0 be an

essential singularity for f. Let I = l(n, K) be the number in Theorem 3. 77ien for all

but at most I — 1 exceptional values of y in R", / takes any y infinitely often in

Bn\{0}.

Proof. Let us assume that there exists / distinct points a,, . . . , a¡ G R" which /

assumes only finitely often in B" \ {0}. Let G be the spherical ring B" \ B"(l/2),

and consider in G the sequence fj(x) = f((l/2J~x)x). The mappings fj map

G onto the same domain that the mapping / maps the spherical ring

B"(\/2J'X)\B"(\/2J).

For j sufficiently large each f¡ maps G to R" \ {ax, . . . , a,) as n(ak,f B" \ {0})

< oo for 1 < k < /. By Theorem 4 the family {fj} is a normal family in G, thus we

can find a subsequence that on any sphere S"~x(r), | < r < 1, which is a compact

subset of G, is either bounded or tends uniformly to oo, but by [MRV2, 4.2] that

means that x = 0 is not an essential singularity, which is a contradiction.

Similarly one can get also an n-dimensional version of Julia's Theorem that can

be formulated as follows.

Theorem 7. Let f: B" \ {0} —»R" be a K-quasiregular mapping with an essential

singularity at x = 0, and let I = l(n, K) be the number in Theorem 3. Then there

exists a point x0 in D such that for each e > 0, n(y,f R) = oo with at most I — 1

exceptions for y, where

R= [J R/y        A.^lxo,^).

Using Theorem 2 one can get also some known sufficient conditions for

normality for families of AT-quasimeromorphic local homeomorphisms, quasicon-

formal, and conformai mappings. We shall point out some of them. We need the

following lemma.
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Lemma 3. Let fm: Dm -*R" be a sequence of K-quasiregular mappings that are

local homeomorphisms and Dx d D2 a • • ■ C Dm c . . . . If D = U^-iAn'/m "*/

uniformly on compact subsets of D, then f is a K-quasiregular mapping that is a local

homeomorphism or f is a constant.

Proof. If Dm = B" for every m then it follows from [Sa, Lemma 4.2]. For any

sequence of domain, take x0 G D, then for m > m^, x0 G Dm. By [MRV3, 2.7] we

can conclude that there exists a positive number r = r(n, K) such that any/m (may

be except a finite number) is AT-quasiconformal in the ball B"(xQ, r- d) where

d = dist{x0, 3Z)}/2. As the limit of a sequence of AT-quasiconformal mappings that

converges uniformly on compact subsets is AT-quasiconformal or a constant, we can

conclude that the limit function is AT-quasiconformal or a constant in B"(x0, r ■ d).

As x0 was an arbitrary point it follows that / is either a constant mapping or a

AT-quasiregular mapping that is a local homeomorphism.

Theorem 8 [MRV3, 2.9]. Let D be a domain in R", n > 3, K > 1, and ej> 0. //

S = {/} is a family of K-quasimeromorphic local homeomorphisms f: D —>R" such

that every f G S omits two points af, bj G R" with q(af, bf) > e > 0, then S is a

normal family.

Proof. We can assume that one of the points af or ¿y is oo; otherwise, we can

compose each mapping with a Möbius transformation that will correspond to a

rotation of the Riemann sphere and that takes one of the points to oo. Then we can

talk about the new family.

Let P he the property: "/ is a AT-quasimeromorphic local homeomorphism that

omits two points af, oo such that q(aj, oo) > e > 0 or / is a constant." Conditions

(i) and (ii) of Theorem 2 are clearly satisfied; condition (iii) is fulfilled by Lemma

3. By [Zo] any AT-quasiregular local homeomorphism of R" is a global homeomor-

phism. But if /is AT-quasiconformal then as of topological reasons it follows that if

{/, R"} G P then/is a constant mapping. Thus/is a normal family of Theorem 2.

As a corollary we can get [MRV3, 2.10], that is the same conditions as in

Theorem 8 but the omitted points are fixed. We can also obtain [V2, 19.2] that have

the normality condition for a family of AT-quasiconformal mappings. As corollaries

to the last condition we can get [V2, 19.3-19.5].

Remark. The following theorems are classical for conformai mappings and can

be obtained by the result of [Z].

Theorem 9. Let 'S = {/} be a family of conformai mappings f: Z) -> C \ (a, b),

DcC. Then 'S is a normal family.

Theorem 10. Let 'S = {/} be a family of conformai mappings f: D -» C \ (th, bf),

D c C and q(as, bf) > e > 0, V/ G 'S, then 'S is a normal family.
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