A STABILITY PROPERTY OF A CLASS OF BANACH SPACES NOT CONTAINING A COMPLEMENTED COPY OF l₁

ELIAS SAAB AND PAULETTE SAAB

ABSTRACT. Let E be a Banach space and K be a compact Hausdorff space. The space C(K, E) will stand for the Banach space of all continuous E-valued functions on K equipped with the sup norm. It is shown that the space E does not contain a complemented subspace isomorphic to l_1 if and only if C(K, E) has the same property.

Let E be a Banach space, let $(\Omega, \Sigma, \lambda)$ be a finite measure space. The classical Banach spaces l_1 , c_0 , $L_p(\lambda)$ and $L_p(\lambda, E)$ will have their usual meaning [3]. The notations and terminology used and not defined in this paper can be found in [3], [4], [7].

In [5] Kwapien showed that if c_0 embeds in $L_p(\lambda, E)$ then c_0 embeds into E if $1 \le p < +\infty$. Pisier [6] showed that if l_1 embeds into $L_p(\lambda, E)$ then l_1 embeds in E if $1 . The moral behind Kwapien's theorem is: Since <math>c_0$ cannot embed into $L_p(\lambda)$ if $1 \le p < +\infty$, c_0 must embed into E if it does embed in $L_p(\lambda, E)$. A similar remark can be made about Pisier's result.

In this paper we will show that if l_1 is isomorphic to a complemented subspace of C(K, E), then l_1 is isomorphic to a complemented subspace of E and the moral behind our result is that l_1 is not isomorphic to a complemented subspace of any C(K) space.

THEOREM 1. Let K be a compact Hausdorff space and E be a Banach space; then l_1 is isomorphic to a complemented subspace of C(K, E) if and only if l_1 is isomorphic to a complemented subspace of E.

PROOF. If l_1 is isomorphic to a complemented subspace of C(K, E), then c_0 embeds in $C(K, E)^*$ [1]. The space $C(K, E)^*$ is isometrically isomorphic to the Banach space $M(K, E^*)$ of all w^* -regular E^* -valued measures of bounded variation defined on the σ -field Σ of Borel subsets of K and equipped with the norm ||m|| = |m|(K), where |m| is the variation of m. Let $(m_n)_{n \ge 1}$ be a sequence in $M(K, E^*)$ equivalent to the usual c_0 -basis and let λ be the scalar measure defined on Σ by $\lambda = \sum_{n=1}^{\infty} |m_n|/2^n$. Let Σ_1 be the completion of Σ with respect to λ .

Received by the editors December 20, 1980.

1980 Mathematics Subject Classification. Primary 46G10, 46B22.

Key words and phrases. Complemented subspaces, vector measures.

Fix ρ a lifting of $\mathcal{L}^{\infty}(\Sigma_1, \lambda)$ [4, §11]. For each n > 1, there exists a function $g_n: K \to E^*$ such that

- (i) For every $x \in E$, the map $t \to \langle g_n(t), x \rangle$ is λ -integrable.
- (ii) For every $A \in \Sigma_1$ and every $x \in E$

$$\langle m_n(A), x \rangle = \int_A \langle g_n(t), x \rangle d\lambda.$$

- (iii) $\rho(g_n) = g_n$ (see [4, p. 212]).
- (iv) The map $t \to ||g_n(t)||$ is λ -integrable and $||m_n|| = \int_K ||g_n(t)|| d\lambda$.

The existence of each g_n satisfying (i)—(iv) is assured by [4, §11, Theorem 5]. Let $(a_n)_{1 \le n \le p}$ be a finite real sequence and let $m = \sum_{n=1}^p a_n m_n$. By [4, §11, Theorem 5], there exists a function $g: K \to E^*$ satisfying with respect to m and λ the above properties (i)—(iv); therefore $\rho(g) = g$ and $||m|| = \int_K ||g(t)|| d\lambda$, and for every $x \in E$ and every A in Σ_1

$$\langle m(A), x \rangle = \int_{A} \langle g(t), x \rangle d\lambda.$$

Let $h = \sum_{n=1}^{p} a_n g_n$; the properties (ii) and (*) imply that for every $x \in E$

(**)
$$\langle h(t), x \rangle = \langle g(t), x \rangle$$
, λ -almost everywhere.

The properties (**), $\rho(g) = g$ and $\rho(h) = h$ imply that g = h [4, p. 212]. Hence

$$\left\| \sum_{n=1}^{p} a_n m_n \right\| = \int_{K} \left\| \sum a_n g_n(t) \right\| d\lambda$$

for any finite sequence of reals $(a_n)_{1 \le n \le p}$. Let F be the space of all finite real sequences and denote by e_n the nth unit vector. For $a = (a_n)_n \in F$, let $||a||_{\infty} = \sup_n |a_n|$. For each $t \in K$ define a seminorm $|\cdot|_t$ on F by $|a|_t = ||\sum a_n g_n(t)||$. Clearly $|a| = \int_K |a|_t \, d\lambda$ is a seminorm of F and $|a| = ||\sum a_n m_n||$. Since (m_n) is equivalent to the c_0 -basis in $M(K, E^*)$ we have

$$C_2||a||_{\infty} \leq ||\sum a_n m_n|| \leq C_1||a||_{\infty}$$

for some $C_1 > 0$ and some $C_2 > 0$, but this implies that $C_2 ||a||_{\infty} \le |a| \le C_1 ||a||_{\infty}$ and this means that $(e_n)_{n > 1}$ is equivalent to the c_0 basis for | | in F. By [2, Theorem 1], there exist $t \in K$ and a subsequence of $(e_n)_{n > 1}$ which is a c_0 -basis for $| |_t$. Hence there exists a subsequence (g_{n_p}) of (g_n) such that $(g_{n_p}(t))$ is equivalent to the usual c_0 -basis in E^* ; therefore c_0 embeds in E^* . Consequently l_1 is isomorphic to a complemented subspace of E by [1]. The other implication is of course obvious.

Suppose now that K is a compact convex subset of a locally convex Hausdorff topological vector space and let A(K, E) stand for the Banach space of all affine E-valued continuous functions equipped with the supremum norm. Theorem 1 and Theorem 3.4 of [7] give a more general result, namely,

COROLLARY 2. Suppose that K is a Choquet simplex. Then l_1 is isomorphic to a complemented subspace of A(K, E) if and only if l_1 is isomorphic to a complemented subspace of E.

PROOF. Note that since K is a Choquet simplex, the dual of A(K, E) is isometrically isomorphic to a closed subspace of $M(K, E^*)$ [7, Theorem 3.4]. By [1], c_0 embeds in $A(K, E)^*$ and therefore c_0 embeds in $M(K, E^*)$. Hence c_0 embeds in E^* by Theorem 1 and consequently l_1 is isomorphic to a complemented subspace of E.

BIBLIOGRAPHY

- 1. C. Bessaga and A. Pełczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
 - 2. J. Bourgain, An averaging result for c₀-sequences, Bull. Soc. Math. Belg. Ser. B 30 (1978), 83-87.
- 3. J. Diestel and J. J. Uhl, Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977.
 - 4. N. Dinculeanu, Vector measures, Pergamon Press, New York, 1967.
 - 5. S. Kwapien, Sur les espaces de Banach contenant co, Studia Math. 52 (1974), 187-188.
- 6. G. Pisier, Une propriété de stabilité de la classe des espaces ne contenant pas l₁, C. R. Acad. Sci. Paris Sér. A 286 (1978), 747-749.
- 7. P. Saab, The Choquet integral representation in the affine vector valued case, Aequationes Math. 20 (1980), 252-262.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BRITISH COLUMBIA,

Current address: Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211