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A STABILITY PROPERTY OF A CLASS

OF BANACH SPACES NOT CONTAINING

A COMPLEMENTED COPY OF /,

ELIAS SAAB AND PAULETTE SAAB

Abstract. Let £ be a Banach space and K be a compact Hausdorff space. The

space C(K, E) will stand for the Banach space of all continuous ¿T-valued func-

tions on K equipped with the sup norm. It is shown that the space E does not

contain a complemented subspace isomorphic to lx if and only if C(K, E) has the

same property.

Let E be a Banach space, let (£2, 2, A) be a finite measure space. The classical

Banach spaces /,, c0, Lp(X) and Lp(X, E) will have their usual meaning [3]. The

notations and terminology used and not defined in this paper can be found in [3],

[4], [7].
In [5] Kwapien showed that if c0 embeds in Lp(X, E) then c0 embeds into E if

1 < p < +00. Pisier [6] showed that if /, embeds into Lp(X, E) then /, embeds in E

if 1 <p < +00. The moral behind Kwapien's theorem is: Since c0 cannot embed

into Lp(X) if 1 < p < + oo, c0 must embed into E if it does embed in Lp(X, E). A

similar remark can be made about Pisier's result.

In this paper we will show that if /, is isomorphic to a complemented subspace of

C(K, E), then /, is isomorphic to a complemented subspace of E and the moral

behind our result is that /, is not isomorphic to a complemented subspace of any

C(AT) space.

Theorem 1. Let K be a compact Hausdorff space and E be a Banach space; then lx

is isomorphic to a complemented subspace of C(K, E) if and only if /, is isomorphic to

a complemented subspace of E.

Proof. If /, is isomorphic to a complemented subspace of C(K, E), then c0

embeds in C(K, E)* [1]. The space C(AT, E)* is isometrically isomorphic to the

Banach space Af(AT, E*) of all w*-regular £*-valued measures of bounded varia-

tion defined on the a-field 2 of Borel subsets of AT and equipped with the norm

||w|| = |w|(AT), where |m| is the variation of m. Let (mn)n>x he a sequence in

M(AT, E*) equivalent to the usual c0-basis and let A be the scalar measure defined

on 2 by A = 2™_.|wn|/2". Let 2, be the completion of 2 with respect to A.

Received by the editors December 20, 1980.

1980 Mathematics Subject Classification. Primary 46G10, 46B22.

Key words and phrases. Complemented subspaces, vector measures.

© 1982 American Mathematical Society

0002-9939/82/0000-0010/$01.75

44



A STABILITY PROPERTY 45

Fix p a lifting of £"(2,, X) [4, §11]. For each n > 1, there exists a function gn:

AT->£* suchthat

(i) For every x G E, the map / -» (g„(t), x> is A-integrable.

(ii) For every A G 2, and every x G £

<mn04),x> = /"<g„(0,x>c/A.

(iii) p(g„) = g„ (see [4, p. 212]).

(iv) The map t -» || g„(t)\\ is A-integrable and ||w„|| = fK\\ g„(t)\\ dX.

The existence of each gn satisfying (i)-(iv) is assured by [4, §11, Theorem 5]. Let

(an)i<n<p De a finite real sequence and let m = 2^_, anmn. By [4, §11, Theorem 5],

there exists a function g: AT—» E* satisfying with respect to m and A the above

properties (i)-(iv); therefore p(g) = g and ||m|| = }K\\g(t)\\ dX, and for every

x G E and every A in 2,

(*) (m(A),X/ = [(g(t),x)dX.
JA

Let n = 2£_! ang„; the properties (ii) and (*) imply that for every x G ¿s

(*») <n(í), x> = <g(f), x>,   A-almost everywhere.

The properties (**), p(g) = g and p(n) = n imply that g = n [4, p. 212]. Hence

p

n=l
= /J2>ng„(0||<tt

for any finite sequence of reals (a„)x<n<p. Let F he the space of all finite real

sequences and denote by en the nth unit vector. For a = (a„)„ G F, let llalla =

sup„|a„|. For each t G AT define a seminorm | |, on F by \a\, = ||2 angn(t)\\. Clearly

\a\ = f Aa\t dX is a seminorm of F and |a| = ||S anmn\\. Since (m„) is equivalent to

the c0-basis in Af(AT, £■*) we have

QHU < 12 wl < c«H°°
for some C, > 0 and some C2 > 0, but this implies that C2IIÛHOO < \a\ < CJall,^

and this means that (e„)n>x is equivalent to the c0 basis for | | in F. By [2, Theorem

1], there exist t G AT and a subsequence of (en)n>x which is a c0-basis for | |,. Hence

there exists a subsequence (g ) of (g„) such that (g (t)) is equivalent to the usual

c0-basis in E*; therefore c0 embeds in E*. Consequently /, is isomorphic to a

complemented subspace of E by [1]. The other implication is of course obvious.

Suppose now that AT is a compact convex subset of a locally convex Hausdorff

topological vector space and let A(K, E) stand for the Banach space of all affine

¿s-valued continuous functions equipped with the supremum norm. Theorem 1 and

Theorem 3.4 of [7] give a more general result, namely,

Corollary 2. Suppose that K is a Choquet simplex. Then /, is isomorphic to a

complemented subspace of A(K, E) if and only if /, is isomorphic to a complemented

subspace of E.
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Proof. Note that since AT is a Choquet simplex, the dual of A(K, E) is

isometrically isomorphic to a closed subspace of M(K, E*) [7, Theorem 3.4]. By [1],

c0 embeds in A (AT, E)* and therefore c0 embeds in M(AT, E*). Hence c0 embeds in

E* by Theorem 1 and consequently /, is isomorphic to a complemented subspace

of E.
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