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ALMOST PERIODIC SOLUTIONS FOR

A CERTAIN CLASS OF ALMOST PERIODIC SYSTEMS

GEORGE SEIFERT

Abstract. Using a result due to Medvedev [3], we obtain conditions under which

systems of ordinary differential equations of the form x' = F{t, x, x) + G\t, x)

where F and G are almost periodic in t will have unique almost periodic solutions

with certain global stability properties and module containment. These conditions

are compared to conditions for the existence, but not uniqueness, for such solutions

obtained by Kartsatos in [2]. Both results, our as well as Kartsatos', are applied to a

second order equation of Lienard type with almost periodic forcing.

In [2], Kartsatos uses a result due to Medvedev [3] to get conditions sufficient for

the existence of an almost periodic solution of a differential equation of the form

(1) x'= F(t, x, x) + G(t, x);

here x, F, and G are real «-vectors, the set of which we denote by R ", and F and G

are almost periodic (a.p. for short) in t uniformly for x in compact subsets of R". It

must also be assumed that F(t, x, 0) = 0, a condition not mentioned in [2]. This is

no great restriction, since if it does not hold, we consider (1) with F(t, x, x)

replaced by F(t, x, x) - F(t, x, 0) and G(t, x) by G(t, x) + F(t, x, 0). However,

the above-mentioned result in [2] involves conditions on G which of course may

change if F(t, x, 0) 5* 0. For a more explicit discussion of Kartsatos' result, cf.

Remark 3 of this paper.

Uniqueness of the a.p. solution, however, is not implied in Kartsatos' result. This

is interesting since many of the known sufficient conditions for the existence of a.p.

solutions involve some kind of uniform asymptotic stability for a solution bounded

on R, the set of reals, which in turn usually implies the uniqueness of the a.p.

solution with respect to some bounded set in R" containing its values; cf. for

example [1, 4] for more details on such results. Clearly, some sort of uniqueness

and stability for an a.p. solution would be desirable in practical applications.

Accordingly, it is the purpose of this paper to establish a condition for the existence

of a unique a.p. solution with certain stability properties.

Let/(r, x) be continuous on R X R" to R". The following is a nonglobal version

of Medvedev's result in [3] and is proved by making some obvious modifications in

the proof in [3]. In what follows, |x| will denote any convenient norm in R".
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Theorem 1. Let \f(t, 0)| < M for t G R and let there exist H > 0, p > 0 with

pH < 1, and r > M/p such that

(1.1) \x- y + h(fit, x)-fit,y))\ <(\-ph)\x-y\

holds for 0 < n < H, \x\ < r, \y\ < r, and t G R. Then there exists a unique solution

x(t) of

(2) x'=f(t,x)

such that \x(t)\ < M /p for t G R. Also if x(t) is any solution of (2) such that, for

some t0, \x(t0)\ < M/p, then x(t) — x(t) -* 0 as t -» oo.

The proof involves writing (2) in the form x' = A(t, x) + b(t) where A(t, x) =

fit, x) — fit, 0) and b(t) = fit, 0) and following the proof of the corresponding

result in [3]; we omit the details.

The next theorem uses an existence result due basically to Ameno; cf. either [1]

or [4] for details.

Theorem 2. Let f satisfy the conditions in Theorem 1 and also be a.p. in t

uniformly for x in compact subsets of R" (cf. [1] or [4] for a definition). Then there

exists a unique a.p. x(t) of (2) such that \x(t)\ < M/p for t G R and such that if

x(i0) < M/p for some t0 and solution x(t) of (2), then x(t) — x(t) —*0 as t —» oo.

Also the frequency module of x(t) is contained in the frequency module of f (cf. [1] or

[4] for a definition).

We again omit the details of the proof, except to point out that if g(t, x) is in the

hull of/(/, x); i.e., g(t, x) = lim/(f + tk, x) for some sequence {tk: k = 1, 2, . . . },

the limit being uniform on sets R X K, AT c R ", K compact, then g satisfies the

same conditions imposed on /in Theorem 2.

Our main result is for equations of the form (1). We assume henceforth that there

exist positive numbers r, H,p withpH < 1, and Lx > 0, L2 > 0, Mx > 0 such that

(i) |x - v + h(F(t, u, x) - F(t, u,y))\ < (1 - ph)\x - y\ for 0 < h < H, \x\ <

r, \y\ < r, \u\ < r, t G R.

(ii) \G(t, x) - G(t,y)\ < Lx\x - y\ for |x| < r, \y\ < r, t G R.

(iii) \F(t, u, x) - F(t, v, x)\ < L2\u - v\ for |x| < r, \u\ < r, \v\ <r,t G R.

(iv) \F(t, 0, 0) + G(t, 0)| < Mx for t G R.

Lemma 1. Let (i)-(iii) hold and suppose p > Lx + L2. Then there exist positive

numbers px and H\,pxHx < 1, suchthat

(3) \x-y + h(f(t, x) - f(t,y))\ < (1 - Pxh)\x - y\

for \x\ <r,\y\ < r, 0 < n < Hx, and t G R; here fit, x) = F(t, x, x) + G(t, x).

Proof. For |x| < r, \y\ < r, t G R, we have

|x - v + h(F(t, x, x) + G(t, x) - F(t,y,y) - G(t,y))\

< \x - y + h(F(t, x, x) - F(t,y,y))\ + hLx\x - y\

< |x - v + h(F(t, x, x) - F(t, x,y))\ + h(L2 + L,)|x - y\

< (I - h(p - Lx - L2))\x - y\.
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We now takep, = p — Lx — L2, and Hx > 0 such thatpxHx < 1 and the proof

is complete.

Theorem 3. Let (i)-(iv) hold and suppose px = p — Lx — L2 > Mx/r. Let

F(t, x, u) and G(t, x) be a.p. in t uniformly for x and u in compact subsets of R".

Then there exists a unique a.p. solution x(t) of (I) such that \x(t)\ < Mx/pxfor t G R

whose frequency module is contained in the frequency module of F(t, x, u) + G(t, x),

and if x(t) is any solution of (I) with \x(t0)\ < Mx/pxfor some t0, then x(t) — x(t) —*

0 as t -* oo.

Proof. Under the hypotheses above, the hypotheses of Theorem 2 hold with/ as

defined in Lemma 1, M = Mx, p = px, and H — Hx; our theorem thus is a direct

consequence of Theorem 2.

Remark 1. Note that L, and L2 depend in general on r; in fact, the choice of p in

(i) may also depend on r. Thus the condition p — Lx — L2> Mx/r can be

regarded as a condition on r. In the following example this will become clear.

Remark 2. The unique a.p. solution of Theorem 2 and hence also Theorem 3

actually is uniformly asymptotically stable in the sense of Liapunov for any

solution y(t) such that | v(/0)| < r for some t0; this follows from the proof of

Theorem 1.

Remark 3. The main result (Theorem 2) in [2] shows that in addition to

condition (i), the following conditions are sufficient for the existence of an a.p.

solution of (1), but not necessarily its uniqueness. Define

B(t, u) = G(t, u) + F(t, u, 0),

M(r) = sup{|5(i, m)|: |k| < r, t G R), and

L(r) = inf{L: \B(t, u) - B(t, v)\ < L\u - v\, \u\ < r, \v\ < r, t G R).

Then

(ii')L(r)<pand

(iii')M(r)/r<p

where p and r are as m (i).

It is not clear that the hypotheses of our theorem imply those of Theorem 2 in

[2]. This will be seen in the following example.

We consider a system in R 2 of the form

(4) x'x = ax2 — x„       x'2 = -x2 — g(xx) + b(t)

where a is a constant, 0 < a < 1, g(0) = 0, g is locally Lipschitz on R, and b(t) is

a.p.

It is not difficult to show that (4) is equivalent to the second order scalar

equation

(5) x" + 2x' + x + ag(x) = ab(t).

For each r > 0 we define Lg(r) to be the infimum of the set of L such that

(6) |g(x) - g(y)\ < L\x - y\    for |x| < r, \y\ < r.

Clearly (6) holds for L = Lg(r).
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Theorem 4. Let Mx = sup{|¿>(í)|: (Ei) and suppose there exists r > 0 such that

(7) Mx/r + max{a, Lg(r)) < 1.

Then there exists a unique a.p. solution (xx(t), x2(t)) of (A) such that \xx(t)\ + |x2(r)|

< Mx/px for t G R where p, = 1 — max{a, Lg(r)} and each solution (xx(t), x2(t))

such that |x,(/0)| + |x2(/0)| < Mx/px for some t0, satisfies xx(t) —► xx(t) and x2(t) —»

x2(f) as t —> oo.

Proof. Define

F(t, u, x) = (au2 - x„ -x2 - g(ux)),       G(t, x) = (0, b(t))

where x = (x,, x2), u = (ux, u^, and define the norm |x| = |x,| + |x2| for any

x G R2.

If we take p = \, 0 < H < \, it is easy to see that (i) holds. Clearly if we take

L, = 0 and L2 = max{a, Lg(r)}, then (ii) and (iii) also hold. Finally (iv) holds from

the definition of M, given in our theorem.

It remains to check thatp — L, — L2> Mx/r, but since p = 1, this is a trivial

consequence of (7). Hence our theorem follows as a direct consequence of Theorem

3.

Corollary 1. Suppose g(x) is continuously differentiable in a neighborhood of

x = 0 and g'(0) = 0. Then for Mx sufficiently small, (4) has a unique a.p. solution

with values in some set in R2 of the form |x| < r0, r0 > 0, and which is approached by

solutions with values in that set as t —> oo.

Proof. Since now Lg(r) —» 0 as r —>0, and 0 < a < 1, we may fix r = r, such

that Lg(rx) < a, and then for Mx sufficiently small, (7) will hold.   Q.E.D.

Another very simple corollary of Theorem 4 would be obtained if Lg(r) < m < 1

for r > 0; in this case for any A/,, i.e., any a.p. function b(t), (4) has a unique a.p.

solution x(t) such that |x(f)| < Mx/(\ — m0) for all t G R where m0 = max{a, m).

Note that this condition implies that | g(x)| < m for all x.

Let us now derive conditions for the existence of an a.p. solution of (4) using

Theorem 2 in [2]; cf. Remark 3.

Define F(t, u, x) and G(t, x) as in the proof of Theorem 4. Then clearly (i) holds

for arbitrary r > 0 if p = 1 and 0 < H < 1. Also we find

B(t, u) = (au2, -g(ux) + b(t)),

where u = (w„ u^. Thus

(8) M(r) = sup{a\u2\ + |g(«,) - b(t)\: \ux\ + \u2\ <r,t <E R}

and

L(r) = inf{L: a\u2 - v2\ + \g(ux) - g(vx)\ < L(\ux - vx\ + \u2 - c2|),

Kl + \u2\ < r, \vx\ + \v2\ < r}.

If gr = sup{|g(«)|: |m| < r), and Af, is as above, then M(r) < ar + gr + M, and

since gr < Lg(r)r, where Lg(r) is as previously defined, and p = 1, it follows that

(iii') in Remark 3 holds if

(10) a + Lg(r) + Mx/r < 1.
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Also clearly L(r) < max{a, Lg(r)}, and since 0 < a < 1, (ii') in Remark 3 holds

if Lg(r) < 1, which is implied by (10). So if (10) holds for some r, Theorem 2 of [2]

implies the existence of an a.p. solution of (4).

It can easily be seen that (10) is best possible to obtain (ii') and (iii') for general g

and b such as occur in (4). However, (10) is not implied by (7) of our Theorem 4;

suppose Mx/r =\,a = Lg(r) = i. It therefore follows that Theorem 4 can yield the

stronger uniqueness and stability property of the a.p. solution in cases where

Theorem 2 in [2] does not. For other results on systems like (4), cf. [1].

Some of the following observations were suggested by the referee.

First, it can easily be shown that (1.1) implies

(H) \At,x)-fit,y)\>p\x-y\

for |x| < r, | v| < r, t G R. A similar condition on F is implied by (i). This clearly

imposes some restrictions on the equations we consider.

Second, conditions (1.1) and (i) depend on the choice of norm in R". If we use

the Euclidean norm with inner product denoted by <x,>>>, it follows easily from

(1.1) that

(12) <x -y,f(t,x) -f(t,y)} < -p\x -y\2

for |x| < r, \y\ < r, t G R. So if x(t) and y(t) are solutions of (2) such that

\x(t)\ < r, \y(t)\ < r for t > t0, then it follows from (12) that

(13) |x(f) - y(t)\ < \x(t0) - y(t0)\ exp(-p(t - t0))

for t > t0. Thus the convergence x(t) — x(t) -» 0 as t -» oo is actually uniform (in

t0) and exponential. This can also be seen by considering a proof of Theorem 1 in

terms of a general norm in R", but not in as simple a fashion.

A final remark: while Theorem 2 in [2] does not assert the existence of a unique

a.p. solution of (1), it does assert frequency module containment. Also the proof of

this theorem does not appeal to Amerio separation arguments or uniform stability

conditions directly but uses Medvedev's condition (i), in a sense a stability

condition, and the Bohr definition of a.p. functions in term of translation numbers;

again cf. [1, pp. 60-63] for details on frequency modules for a.p. functions.
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