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THE FIRST SIGN CHANGE OF A COSINE POLYNOMIAL

JAMES D. NULTON AND KENNETH B. STOLARSKY

Abstract. It is reasonable to expect the first sign change of a real cosine

polynomial to decrease when its smallest frequency is increased. Many cases in

which this is true are exhibited, but it is shown that there exist (presumably

unusual) cosine polynomials for which the first sign change may increase by an

arbitrarily large amount.

1. Introduction. The position of the first sign change of a real cosine polynomial

as a function of its frequencies X¡ seems unstudied. It is well known, however, that

in a small angle about the positive x-axis the density of the complex zeros of any

(1.1) f(x) = 2 *, cos \x
/-i

with (say) the a, real and

(1.2) 0 < A, < • • • < XN

is proportional to the largest frequency XN (see, e.g., [3, 4, 9, 11, 12, 15] for more

general results on zero densities of exponential polynomials with arbitrary complex

coefficients). For the much harder problem of the real zeros, Kac [5] has shown in

certain cases that their density is proportional to a quantity bearing some resemb-

lance to the root mean square of the X,.

Hypothesis 1. Increases in the \ tend to decrease the position of the first sign

change.

We shall examine several ways of making Hypothesis 1 precise. Our main result

is the negative one of §4; this entails the existence of a curious positive integer N0

(see §2) that may be difficult to compute.

2. Reformulations of Hypothesis 1. It is obvious that replacing every \ by \t for

some t > 1 will decrease the position of the first sign change. For N = I Hypothe-

sis 1 is obviously true, and for N = 2 with a, = a2 ¥= 0 it follows from

^)-H(^)4
On the other hand, for X > 1 it is not always true for

(2.2) cos x + a cos Ax;

(2.1) cos Xxx + cos X2x = -T-cos
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for example, when a = .1 the first sign change is it/2 when X = 1, but somewhat

less when X = 2. However, it is not hard to establish

Proposition 2.1. 7/0 < X, < X2 and a is real, the first sign change of

(2.3) cos X.x + a cos X,xV / 1 i

will not increase ifXx is replaced by X*, where

(2.4) X, < X* < X2.

Here, and in what follows, we omit proofs of statements that can be established

in a fairly straightforward manner involving implicit differentiation.

The above result suggests

Hypothesis 2. Increases in the LOWEST frequency tend to decrease the position of

the first sign change.

That nothing much stronger than this can be invariably true, even when all the a,

are equal, is indicated by the fact that the first sign change of

(2.5) cos X,x + cos X2x + cos X3x,       0 < X, < X2 < X3,

is increasing with X, for

(2.6) 7 < X2 < 7.3

when X, = 1 and X3 = 16 (whether Hypothesis 2 is valid for all trinomials (2.5)

remains open). The result of §4 is that Hypothesis 2 is sometimes false. It would be

interesting to know the smallest integer N = N0 for which it fails; clearly N0 > 3.

It is not hard to establish the following weakened form of Hypothesis 1.

Proposition 2.2. Let

(2.7) P = (V . . ., X0N)

be a point in EN. Assume that for all (X,, . . . , XN) in the neighborhood of P the first

sign change of the cosine polynomial (1.1) is a continuous function of the X¡. Then for

some i it is locally a decreasing function of X, when the X¡ with j =£ i are held fixed.

3. Reformulations of Hypothesis 2. The following results assert the validity of

Hypothesis 2 for certain lacunary polynomials, and for polynomials with a domi-

nant first term. Their rather simple nature is brought out by stating them for a class

of functions wider than cosine polynomials; proofs are omitted.

Proposition 3.1. Let g(x) be an even real-valued function of period 2ir that is

continuously differentiable, and strictly decreasing on [0, it). Assume that

(3.1) g(0) = 1,       g(m/2) = 0.

Let

(3.2) G(x) = g(X,x) + a2g(X2x + c2) + • • • +ang(XNx + c„)

where the a¡, c¡, and X, are real numbers such that

(3.3) 1 < X, < X2 < • • • <XN.

Assume that

(3.4) 4X,. <X,+1,        \<j<N-l.
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77ie« whenever the first sign change of G(x) is a continuous function ofXx, and

(3.5) 1 < X, < X2/4,

that sign change is a nonincreasing function ofXx.

Proposition 3.2. If condition (3.1) is augmented to

(3.1*) S(0) = 1,       g(*/2) = 0,       g(ir) = -l

and condition (3.4) is replaced by
N

(3.4*) max   \g(x)\ 2 k| < L
0<*<2,r J=2

then the conclusion of Proposition 3.1 is valid for

(3.5*) 1 < X, < X2.

4. Hypothesis 2 is sometimes false. The proof of the negative result below is

similar in spirit to some work of Talalyan ([17], esp. pp. 113-114; see also [13]),

although his goals are rather different.

Theorem. Let m > 2 be an integer and 0 < e < (6m)'x. There is a real cosine

polynomial

N

(4.1) T(x; X,) = T(x; X„ . . ., X„) = 2 a¡ cos Xyx,        1 < X, < • • • < X^,
7-1

such that the first sign change of T(x; 1 + e) exceeds the first sign change of T(x; 1)

by more than m.

It is easy to see that the theorem would be false without some upper bound on e;

we leave open the question of how much our upper bound may be relaxed. The

expressions e, g(x), m, ¡x, and y0 shall have the same meaning throughout this

section. The theorem follows from Lemma 3 upon replacing x by x/m and mx by

m in (4.12).

Lemma 1. Let x > 0 and

(4.2) g(x) = cos mx — cos(l + e)mx = 2 sin(l + e/2)mx sin(e«zx/2).

Then \ g(x)\ < x/6 and

(4.3) g(x) > 0,       0 < x < 3w/8w.

Also, there is a number ¡x with 0 < /x < ir/\6m such that

(4.4) n < g(x),       <n/Zm < x < 3-rr/im.

Proof. This is almost trivial; note that in the above intervals g(x) is strictly

increasing, so we may take

(4.5) n = g(w/8m) < ir/\6m.

Lemma 2. For x > 0 define

(4.6) h(x,y) = x + y cos 4mx,       v(y) = min h(x, y).
*

There is a positive number y0 < 5ir/16/n such that

(4.7) v(yo) = ~r1'
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(4.8) «(x, v0) < 0   implies    m/%m < x < 3ir/%m or x = 0,

and

(4.9) h(x,y0) + g(x)>0.

Proof. The function v(y) assumes values arbitrarily close to 0 for small positive

y, while

(4.10) v(5tr/\6m) < h(-rr/4m, 5w/16w) = -m/Xdm.

Since v is continuous, (4.7) follows. Clearly h(x,y0) is positive to the left of the

interval of (4.8); to the right it is at least 3-ir/im + 5w/l6m(-l) > 0.

Inequality (4.9) is clear for 0 < x < ir/%m, and by (4.4) and (4.7) it extends to

x < 3ir/8m. Beyond this range the left side exceeds

(4.11) x - v0 - x/6 > 5x/6 - 5tr/\(>m > 0.

Lemma 3. There is a real cosine polynomial

j

(4.12) p(x; mx) = -cos m,x +    2    ty cosjx
j — m+l

such that the first sign change of p(x; (1 + e)m) exceeds the first sign change of

p(x; m) by more than 1.

Proof. Standard arguments from Fourier analysis enable us to extend

(4.13) F(x) = x + cos mx + .5li,       0 < x < 2,

to an even continuous function/ periodic on [-it, it], for which

fir
(4.14) I  /(x)cosyx dx = 0,       0 < j < m.

The Cesàro means of its Fourier series converge to / uniformly, so there is a real

cosine polynomial C(x) with all frequencies greater than m such that

(4.15) x < C(x) — cos «jx <x + /i,       0<x<2.

Define

(4.16) k(x) = C(x) — cos »jx + y0 cos 4mx;

then

(4.17) h(x, y0) < k(x) < h(x,y0) + ¡i,       0 < x < 2.

By (4.7) and (4.8), k(x) has a sign change at some x0 < 37r/8»i_< 1. However, to

replace cos «ix by cos(l + e)mx is to add g(x) to k(x), and by (4.17) and (4.9) this

yields a cosine polynomial that is strictly positive on [0, 2]. This completes the

proof.

It is plausible that in (X, ..., X^, ax, . . ., aN) phase space, the set of points

where Hypothesis 2 fails in asymptotically very small in relative measure.

5. Remarks. Problems concerning the size (e.g. 7^,-norm) and real zero distribu-

tion of phase-shifted cosine polynomials fix) = 2f_i a¡ cos(X,x + c,) or even pure

cosine polynomials (i.e. every c, is zero) are often difficult [6, p. 33; 8];  the
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establishment of some simply stated results (even when every a¡ is one) has required

great ingenuity [1, 2, 7, 8, 14, 18]. Indeed, simple questions can already require

extensive analysis for N = 3 [16].
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