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DERIVATIONS ON COMMUTATIVE BANACH ALGEBRAS

A. KHOSRAVI

Abstract. Let A be a commutative Banach algebra with radical R and D be a

derivation on A. If K = [x e R: for every « > 1, Z)"* e R}, then /)/! Ç R if and

only if A" is closed.

1. Introduction. In [10] Singer and Wermer showed that the range of a continuous

derivation on a commutative Banach algebra is contained in the radical. They

conjectured that the assumption of continuity is unnecessary.

In [5] Johnson proved the following result.

Theorem. If A is a commutative Banach algebra with identity e and if D: A —» A

is a derivation, then there exist orthogonal idempotents e0 . . . em in A with sum e such

that D(eoA) is contained in the radical of e^A and such that each álgebra e¡A . . . emA

has just one maximal ideal. If A is semisimple, then D is continuous.

Let C be the complex field and N the set of all nonnegative integers.

Throughout this paper we suppose that A is a commutative Banach algebras. R

and AA will denote, respectively, the radical and the spectrum of A.

If S is a linear operator from a Banach space X into a Banach space Y, then the

separating space <3(S) of S is defined by

@(5) = { v E Y: there are x„ -> 0 in X with Sx„ -^y in Y}.

It is a great pleasure to thank Dr. G. R. Allan who recommended the problem to

me and helped me with his comments and encouragement during the process of

this work at Cambridge University.

2. Main results.

Lemma 1. Let D: A —» A be a derivation and let

K = {x E R: for every n > 1, D"x ER).

Then K is a prime ideal of A.

Proof. For convenience take D°x = x (x E A). \t is plain that K is an ideal of

A. Let axa2 E K for some ax, a2E A and let ax & K. We must show that a2 E K.

Since ax & K there is an « > 0 such that, for each m < n, Dmax E R but D"ax &

R. Now by induction on i we prove that, for each i > 0, D'a2 E R.
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For / = 0: Since

D"(axa2) = a2(D"ax) + 2lj)^(a2)D"-Jai

and axa2 E Tí, then a2D"ax E R.

On the other hand 7? is a primitive ideal so 7? is a prime ideal. Therefore by the

fact that D"ax E R we have a2E R.

Let D°a2 ■ ■ • D'~xa2 E R. We proceed for /. By Leibnitz's formula

Dn+\axa2) = S (" + '"JTVX^T)"—^,) +(» + ^(a^D^a,)

; = i+i \    ■/     /

Since axa2 E K, then Dn+i(axa2) E R. Now by the assumption and induction

hypothesis we get (nfi)Di(a2)Dnax E R. As before this implies that D^aJ E R.

Hence we have the result.

Lemma 2. Let A have a unique maximal ideal which is its radical R. If D is a

derivation on A, K = {x E R: for every « > 1, D"x ER) and <B(D) n 7? Ç K,

then DA G R.

Proof. Suppose that ©(£>) n R G K. Then (5(7)) is an ideal in A so <S(D) = A

or <B(D) G R because R is the unique maximal ideal of A. In the first case

R = <B(D) n R GKCRsoK=R.lnthe second case @(7>) = @(7>)_n R G K.

The operator Dx from A into A/K defined by Dx(a) = D(a) + K (a E A),

where K denotes the closure of K, is continuous, by [9, Lemma 1.4]. Since

D(K) G K, it follows that 7>,(7<) = 0 so DX(K) = 0.

Thus D defines a continuous derivation D0 from A/K into A/K by

D0(x + K) = Dx + K   for all x E A.

Singer and Wermer's Theorem [2, Theorem 18.16] implies that D0(A/K) G R/K

because R/K is clearly the unique maximal ideal of A/K. Since K G R, then

DA G R.

Theorem 1. If D is a derivation on A and K = {x E R: for every m > 1,

Dmx ER), then DA G R if and only if <B(D) n R G K.

Proof. Since a derivation on a Banach algebra maps its identity to zero then we

can, and will, suppose that A has an identity, say 1.

If DA G R, then K = 7? so ©(£>) n R G R = K.

Conversely suppose that @(7J>) n R G K. By Johnson's Theorem there exist

orthogonal idempotents e0, ex, . . . , em in A with sum 1 such that D(e<y4) is

contained in the radical of eçA and such that each algebra exA, . . ., emA has a

unique maximal ideal.

Let 1 < i < m and take Kt, = {x E Rad(^e,): for all «, D"x E Rad(e>4)}. Hence

K¡ = e¡K and so <B(D) n Rad(e¡A) G R¡Ld(e¡A). Therefore by the above lemma

D(e¡A) G Rad(e,vl). Since í was arbitrary, then DA G R.
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The following definition is due to Cusack [3].

Definition. A closed ideal 7 of a Banach algebra B is called a separating ideal if,

for every sequence (a„) in B, there is an .A/ > 1 such that (7a,, . . . , a„)~=

(7a, . . . aNY (« > N).

Let 7? be the ideal spanned by «-fold products of elements of R.

Lemma 3. If C\n>x R" = {0} and D is a derivation on A, then <B(D) is nilpotent

and DA G R.

Proof. Since @(7)) n R G R, <3(D) n R is a radical commutative Banach

algebra. Let x E @(7J>) n R. Since @(7J>) is a separating ideal by [6, Lemma 1],

there is a positive integer N such that

(G(D)xN)'= (G(D)xny   for all« > N.

Hence by the Mittag-Leffler Theorem [4, Theorem 5.3]

(<B(D)x»y= PI (@(7>)x")-= H (@(7))xT= {0}.
n>l «>1

Therefore x^*1 =0 and x is nilpotent. Since x was arbitrary <S(D) n R is a

nilpotent ideal. Since K is a prime ideal of A, then <S(D) n R G K.

Now by Theorem 1 this implies that DA G R and then <B(D) n R = @(7)) since

©(£>) GÜÄG R.

Corollary 1. 7/7= n„>,7?" ¿s closed, then for every derivation D on A,

DA G R.

Proof. Since for all «, R" is an ideal of A then 7 is an ideal of A. If 7) is a

derivation on A then Dl G I because D(R") G R"~l for « > 2.

Thus D gives a derivation DxonA/I defined by

7>,(x + I) = Dx + I       (x E A).

It is clear that Rad(^/7) = R/I.

Now we prove that nn>, (R/I)n = {0}. Let £ E C\n>x(R/I)n; then for each «,

there is an element a„ E R" such that £ = a„ + I. Thus a, — a„ E 7 for all «,

7 Ç 7?", so a, E 7T for all «, i.e. a, E 7 and so £ = 0.

Then, by Lemma 3, DX(A/I) G R/I which implies DA G R, and we have the

result.

In [7] Loy proved that every derivation on a Banach algebra of formal power

series is continuous. Since for a Banach algebra of formal power series (~| „>, R" =

{0} and 7? is an integral domain, the following result is a generalization of his

result.

Corollary 2. If (~\„>x R" = {0} and R is an integral domain, then every

derivation D on A is continuous.

Proof. If D is a derivation on A, then <B(D) is nilpotent. On the other hand 7? is

an integral domein, so <B(D) = {0} and D is continuous.
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Theorem 2. If D is a derivation on A and K = {x E R: for every ft > 1,

D"x E R }, then DA G R if and only if K is closed.

Proof. If DA G R, then K = R is closed.

Conversely if K is closed, then since 7>7i G K, D gives a derivation Dx on A/K

defined by 7>,(x + K) = Dx + K (x E A).

Since K G R, then R&d(A/K) = R/K.

We prove D^^R/K)" = {0}. Let x E Dn>x(R/K)n. Then there are elements

a„ E R" such that x = <x„ + K. Now for every n > 1, a, — a„+, E Tí; therefore

0"(«i - <Vm) e K.
On the other hand Dnan+X E Rso D"ax E R. Since « was arbitrary, then a, E Tí

and x = 0. But x was arbitrary, so C\n>x(R/K)n = {0}, and by Lemma 3,

DA + K G R. Then DA G R as we wanted.

Corollary. Let every prime ideal of A be closed. Then for every derivation D on

A, DA G R.

Proof. Take Tí = {x E R: for every n > 1, D"x ER). Since Tí is a prime ideal

of A, then K is closed and, by Theorem 2, we have the result.

Example. Let I2 be the well-known Hubert space. Define T: I2 -» I2 by

7x = (0, a,x,, a2x2, . . . )    for x = (x„ x2, . .. ),

where (o^) are nonzero elements of C such that a„ -» 0.

Then T is quasinilpotent and Hn>x T"(l2) = (0). Let B be the norm-closed

subalgebra of L(l2) generated by {7, T} where 7: I2 -> I2 is the identity map. Now

we prove that Rad B =~BT.

Since T is quasinilpotent, then BT G Rad B.

On the other hand, let x E Rad B, so there are polynomials P„(T) such that

P„(T) -> x. We can write P„(T) = B„I + q„(T), where qn(T) G BT.

Let <p be a multiplicative linear functional on B, so <p(p„(T)) = B„ —» <p(x) = 0.

Therefore q„(T) -> x. But q„(T) G BT and so x G~BT. Moreover C] n>,(Rad B)n =

{0} and B = C • I © Rad B. Hence for every derivation D on B, by Lemma 3,

DB G Rad B. From Theorem 1, we get the following result.

Theorem V. If D is a derivation on A, then DA G R if and only if for every « > 1

and <p E LA, <p ° D" is continuous.

Proof. If DA G R, then for every « > 1 and <p E AA, <p ° D" = 0 which is

continuous.

Conversely, for all « > 1 and <p E AA, let <p ° D" be continuous. Let x E @(7>)

n 7?, « > 1, and <p E AA. By the fact that q> ° D" and <p ° 7)n+1 are continuous,

we have <p ° D"(x) = 0. Since <p and « were arbitrary and x E 7?, we conclude that

x E K and by Theorem 1 we have the result.

For generalizing Singer and Wermer's Theorem first we prove the following

lemma.

Lemma 4. Let A have a unique maximal ideal which is its radical. If D is a

derivation on A and, for some n, D" is continuous, then DA G R.
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Proof. Let AA = (<p). Since D" is continuous, for each a E A and m E N

||Z>«(«)|| <   max ||7^(a)||-||7)f

where m = in + r, /EN, 0 < r < n. So exp D is well defined and, for every

z E C, the map a k-> (exp(zD)a) (a E ^4) is a multiplicative linear functional.

Therefore

<p(exp(zD)a) = <p(a)        (a E A).

Since qp(a) is independent of z, this gives <p ° D = 0, i.e. 7X4 Ç 7?.

Theorem 3. If D is a derivation on A and, for some n, D" is continuous, then

DA G R.

Proof. As we state in the proof of Theorem 1 we can, and will, suppose that A

has an identity, say 1. By Johnson's Theorem, there exist orthogonal idempotents

íq, e„ . . . , em in A with sum 1 such that D(e,oA) is contained in the radical of e^A

and such that each algebra exA, . . ., emA has a unique maximal ideal. Let

1 < i < m. Since D" is continuous, the restriction of D" to e¡A is continuous and

by the above lemma D(e¡A) G W&d(e¡A) since / was arbitrary, then DA G R.
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