AN EXTREMAL VECTOR-VALUED L^p-FUNCTION TAKING NO EXTREMAL VECTORS AS VALUES

PETER GREIM

ABSTRACT. We give an example of a nonseparable Banach space V and a function x on [0, 1] with values in the unit sphere of V that is an extreme point of the unit balls of all Bochner L^p -spaces $L^p(\lambda, V)$, $1 , <math>\lambda$ Lebesgue measure, though none of its values is an extreme point of the unit ball of V. This shows that a characterization of the extremal elements in $L^p(\lambda, V)$ for separable V, given by J. A. Johnson, does not hold in general.

The extremal elements in the unit sphere of vector-valued CK- or L^p -spaces have been studied by many authors, e.g. in [2, 5 and 6]. (For the definition and elementary properties of Bochner L^p -spaces we refer the reader to [4].) A quite natural question is to ask whether such a function x is extremal if and only if

- (1) the function $||x(\cdot)||$ is extremal in the corresponding scalar function space and
- (2) the vector x(t) is extremal in the ball with radius ||x(t)|| for all t in a dense subset of the base space (in the CK-case) resp. for almost all t (in the L^p -case).

The "if" part is easy and well known; on the other hand, necessity of (1) is trivial. Hence the remaining question is the necessity of (2).

In the case p = 1 the necessity is easily seen, since (1) implies that the support of x is an atom (see also [6]).

The CK-case was settled long ago. Blumenthal, Lindenstrauss, and Phelps have shown in [2] that for real range spaces V with dimension ≤ 3 the condition (2) is necessary. On the other hand they give an example of a 4-dimensional space V and an extremal x in C([0, 1], V) taking no extremal values. In the remaining cases 1 , J. A. Johnson [5] has shown the necessity of (2), provided <math>V is separable and the measure is a Borel measure on a Polish space (see also [6]).

We shall give an example of a (nonseparable) Banach space W and a function $f: [0, 1] \to W$ that is extremal in the unit balls of all $L^p(\lambda, W)$ (1 Lebesgue measure), although the function does not take any extremal values.

We start from a Banach space W and a function $f: [0, 1] \to W$, extremal in C([0, 1], W), but taking no extremal values, that came up in a discussion with E. Behrends and R. Evans. Then we show that this example works also in the cases $L^p(\lambda, W)$, $1 , using the representation <math>L^p(\lambda, W) \cong L^p(m, W)$ where m is a suitable measure on some Stonean space.

Received by the editors February 9, 1981 and, in revised form, April 27, 1981. 1980 Mathematics Subject Classification. Primary 46E40; Secondary 46B20. Key words and phrases. Bochner L^p -space, extreme point, Stonean space.

66 PETER GREIM

Let K be the Stonean space of the measure algebra B/λ (Borel sets modulo λ -null sets) and m be the perfect Borel measure on K uniquely determined by $m(C) = \lambda(M)$, where the clopen subset C of K represents the equivalence class of M. (Here m is called *perfect* if each open set has positive measure and each nowhere dense set has measure zero. Each Borel set is the symmetric difference of a clopen and a first category—in fact, nowhere dense—set. See [1], e.g., for details.)

Then the Stone representation can be extended (via simple functions) to an isometry $T: L^p(\lambda, V) \cong L^p(m, V)$. (In the case $p = \infty$, where in general the simple functions are not dense, look at the dense subspace of functions taking on countably many values.)

In the scalar case each equivalence class x in $L^{\infty}(m)$ contains exactly one continuous function; hence $L^{\infty}(m) \simeq CK$. Thus K is the maximal ideal space of the algebra $L^{\infty}[0, 1]$. The adjoint of the embedding $C[0, 1] \to L^{\infty}[0, 1]$, restricted to K, is a continuous, hence Borel measurable, surjection ω : $K \to [0, 1]$. Looking at the system of closed intervals with nonvoid interior, which generates the Borel σ -algebra, ω is easily seen to be inverse measure preserving and to induce the Stone representation Ψ in the sense that $\omega^{-1}(M)$ is equivalent to $\Psi(M)$ for each Borel set M.

It follows that $f \mapsto f \circ \omega$ is the isometry T mentioned above. Now let us give the example for the CK-case.

1. Example. Let W_0 be a 3-dimensional space such that there is a curve $f_0: [0, 1] \to B_0$, B_0 the unit ball of W_0 , with

$$f_0(]0,1]) \subset \operatorname{ex} B_0 \text{ and } f_0(0) \notin \operatorname{ex} B_0.$$

(E.g., let $B_0 \subset \mathbb{R}^3$ be the convex hull of $\{(x_1, x_2, 0) | \max |x_i| \le 1\} \cup \{(0, x_2, x_3) | x_2^2 + x_3^2 = 1\}$ and $f_0(t) := (0, \cos(\pi t/2), \sin(\pi t/2))$.) Then define

$$W:=\prod_{[0,1]}^{\infty}W_{0},$$

an l^{∞} -product of uncountably many copies of $W_0, f: [0, 1] \to W$ by

$$f(s)(t) := f_0(|s+t-1|)$$

and $x: K \to W$ by $x := f \circ \omega$. Evidently x is continuous, and ||x(k)|| = 1 for all k in K. For no k in K is x(k) extremal, because $x(k)(1 - \omega(k)) = f_0(0)$ is not extremal in B_0 .

However, x itself is extremal. Assume $x = \frac{1}{2}(y + z)$, y and z in the unit ball of C(K, W). Let $k \in K$. We have to show x(k) = y(k), i.e. x(k)(t) = y(k)(t) for all t in [0, 1]. This holds for $t \neq 1 - \omega(k)$, as in this case x(k)(t) is extremal in B_0 .

For $t = 1 - \omega(k)$ we choose a net (k_{α}) in K converging to k, with $\omega(k_{\alpha}) \neq \omega(k)$ for all indices α . This is possible, because $\omega^{-1}(\{\omega(k)\})$ is a closed set of measure zero, and hence has void interior. Then we have $t \neq 1 - \omega(k_{\alpha})$, and so $y(k_{\alpha})(t) = x(k_{\alpha})(t) \rightarrow_{\alpha} x(k)(t)$, which in turn yields x(k)(t) = y(k)(t). \square

- 2. THEOREM. Let K and m be as above, V a Banach space, $x: K \to V$ and 1 . Then for the following conditions
 - (i) x extremal in C(K, V),
 - (ii) x extremal in $L^{\infty}(m, V)$,
 - (iii) x extremal in $L^p(m, V)$ we have (i) \Rightarrow (iii) \Rightarrow (iii).

PROOF. (ii) \Rightarrow (iii) is essentially contained in Theorem 1 in [6]. Assume x is extremal in the unit ball of $L^{\infty}(m, V)$, in particular $||x(\cdot)|| = 1$ almost everywhere, and $x = \frac{1}{2}(y + z)$ with y and z in the unit ball of $L^{p}(m, V)$. Then the Clarkson inequalities [3], applied to the functions $||y(\cdot)||$ and $||z(\cdot)||$ in $L^{p}(m)$, yield $||y(\cdot)|| = ||z(\cdot)|| = ||x(\cdot)||$ almost everywhere; hence y and z are in the unit ball of $L^{\infty}(m, V)$.

- For (i) \Rightarrow (ii) assume x is extremal in the unit ball of C(K, V) and $x = \frac{1}{2}(y + z)$ with y and z in the unit ball of $L^{\infty}(m, V)$. We look at y and z as functions rather than equivalence classes, in such a way that the equality $x(k) = \frac{1}{2}(y(k) + z(k))$ holds everywhere (without loss of generality). Now an iterative application of Egorov's theorem and of the regularity of m shows that y, as an m-almost uniform limit of continuous simple functions, is continuous on a (disjoint) union $U = \bigcup_{n \in \mathbb{N}} C_n$, with C_n clopen and $\sum_{n \in \mathbb{N}} m(C_n) = 1$. That means y and z are continuous on the open complement U of a suitable m-null set. For each clopen subset C of U, $x|_C$ is extremal in C(C, V); hence $x|_C = y|_C$. Thus $x|_U = y|_U$, which means x = y in $L^{\infty}(m, V)$. \square
- 3. COROLLARY. The function $f: [0, 1] \to W$ in Example 1, taking no extremal vectors as values, is extremal in the unit ball of $L^p(\lambda, W)$ for 1 .

PROOF. The mapping $f \mapsto f \circ \omega$ is a linear isometry of $L^p(\lambda, W)$ onto $L^p(m, W)$.

- 4. REMARKS. (a) An essential point in Theorem 2 was the fact that each Bochner measurable function is continuous on a suitable open set with a null set as complement. So it is not surprising that this theorem fails for λ instead of m: combine Johnson's result with the 4-dimensional Blumenthal-Lindenstrauss-Phelps example.
- (b) The construction of the isometry preceding Example 1 applies to arbitrary finite (even infinite) measures μ ,

$$T: L^p(\mu, V) \cong L^p(m_\mu, V),$$

and the proof of Theorem 2 holds for these measures m_{μ} , too. It would be interesting to know whether in general a Banach space V "recognizes" the extremal elements in $L^p(\mu, V)$ (i.e., extremal functions x satisfy condition (2) above) if and only if it recognizes those in $L^p(m_{\mu}, V)$. Thus, if the above isometry T is not induced by a point mapping ω as in the case $\mu = \lambda$, is it still true that the ranges of x and Tx are essentially the same?

68 PETER GREIM

BIBLIOGRAPHY

- 1. E. Behrends et al., L^p-structure in real Banach spaces, Lecture Notes in Math., vol. 613, Springer-Verlag, Berlin, 1977.
- 2. R. M. Blumenthal, J. Lindenstrauss and R. R. Phelps, Extreme operators into C(K), Pacific J. Math. 15 (1965), 747-756.
 - 3. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- 4. J. Diestel and J. J. Uhl, Jr., *Vector measures*, Math. Surveys, No. 15, Amer. Math. Soc., Providence, R. I., 1977.
 - 5. J. A. Johnson, Extreme measurable selections, Proc. Amer. Math. Soc. 44 (1974), 107-112.
- 6. K. Sundaresan, Extreme points of the unit cell in Lebesgue-Bochner function spaces, Colloq. Math. 22 (1970), 111-119.
- DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA 93106 (Current address)

Mathematisches Institut, Freie Universitaet, Arnimallee 2-6, D 1000 Berlin 33