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AN EXTREMAL VECTOR-VALUED L'-FUNCTION

TAKING NO EXTREMAL VECTORS AS VALUES

PETER GREIM

Abstract. We give an example of a nonseparable Banach space V and a function

x on [0, 1] with values in the unit sphere of V that is an extreme point of the unit

balls of all Bochner L'-spaces Lp(\, V), 1 < p < oo, a Lebesgue measure, though

none of its values is an extreme point of the unit ball of V. This shows that a

characterization of the extremal elements in Lp(k, V) for separable V, given by

J. A. Johnson, does not hold in general.

The extremal elements in the unit sphere of vector-valued CK- or TAspaces have

been studied by many authors, e.g. in [2, 5 and 6]. (For the definition and

elementary properties of Bochner L^-spaces we refer the reader to [4].) A quite

natural question is to ask whether such a function x is extremal if and only if

(1) the function ||x(-)|| is extremal in the corresponding scalar function space

and

(2) the vector x(t) is extremal in the ball with radius ||x(i)|| for all t in a dense

subset of the base space (in the CK-case) resp. for almost all t (in the TZ-case).

The "if" part is easy and well known; on the other hand, necessity of (1) is

trivial. Hence the remaining question is the necessity of (2).

In the case/? = 1 the necessity is easily seen, since (1) implies that the support of

x is an atom (see also [6]).

The CK-case was settled long ago. Blumenthal, Lindenstrauss, and Phelps have

shown in [2] that for real range spaces V with dimension < 3 the condition (2) is

necessary. On the other hand they give an example of a 4-dimensional space V and

an extremal x in C([0, 1], V) taking no extremal values. In the remaining cases

1 <p < oo, J. A. Johnson [5] has shown the necessity of (2), provided V is

separable and the measure is a Borel measure on a Polish space (see also [6]).

We shall give an example of a (nonseparable) Banach space W and a function

/: [0, 1]->W that is extremal in the unit balls of all Lp(\ W) (1 <p < oo, A

Lebesgue measure), although the function does not take any extremal values.

We start from a Banach space W and a function /: [0, 1] -> W, extremal in

C([0, 1], W), but taking no extremal values, that came up in a discussion with E.

Behrends and R. Evans. Then we show that this example works also in the cases

7/(A, W), 1 <p < oo, using the representation LP(X, W) = Lp(m, W) where m is

a suitable measure on some Stonean space.
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Let K be the Stonean space of the measure algebra B/A (Borel sets modulo

A-null sets) and m be the perfect Borel measure on K uniquely determined by

m(C) = X(M), where the clopen subset C of K represents the equivalence class of

M. (Here m is called perfect if each open set has positive measure and each

nowhere dense set has measure zero. Each Borel set is the symmetric difference of

a clopen and a first category-in fact, nowhere dense-set. See [1], e.g., for details.)

Then the Stone representation can be extended (via simple functions) to an

isometry T: LP(X, V) » Lp(m, V). (In the case/? = oo, where in general the simple

functions are not dense, look at the dense subspace of functions taking on

countably many values.)

In the scalar case each equivalence class x in L°°(m) contains exactly one

continuous function; hence Lx(m) s= CK. Thus K is the maximal ideal space of the

algebra L°°[0, 1]. The adjoint of the embedding C[0, 1] -> L°°[0, 1], restricted to K,

is a continuous, hence Borel measurable, surjection <o: K^> [0, 1]. Looking at the

system of closed intervals with nonvoid interior, which generates the Borel o-

algebra, to is easily seen to be inverse measure preserving and to induce the Stone

representation ^ in the sense that to ~ '(M) is equivalent to ^(M) for each Borel set

M.

It follows that / h» / ° w is the isometry T mentioned above. Now let us give the

example for the CTC-case.

1. Example. Let W0 be a 3-dimensional space such that there is a curve

/0: [0, 1] -> Bq, Bq the unit ball of W0, with

/o(]0, 1]) c ex B0   and   /0(0) <2 ex B0.

(E.g., let Bq c R3 be the convex hull of {(x„ x2, 0)|max|x,| < 1} u {(0, x2, x3)\

x\ + x\ = 1} and/0(i) := (0, cos(wi/2), sin(wr/2)).) Then define

W :=   IF Wq,
[0,1]

an /"-product of uncountably many copies of rV0,f: [0, 1] -» Wby

/W(0:=/o(l* + '-l|)

and x: K—> W by x := / ° to. Evidently x is continuous, and ||x(A:)|| = 1 for all k

in K. For no k in K is x(k) extremal, because x(k)(l — u(k)) = /0(0) is not

extremal in B0.

However, x itself is extremal. Assume x =\(y + z), y and z in the unit ball of

C(K, W). Let kE K. We have to show x(A:) = y(k), i.e. x(k)(t) = y(k\t) for all t

in [0, 1]. This holds for / J= 1 - u(k), as in this case x(k)(t) is extremal in B0.

For t = 1 - «(&) we choose a net (ka) in K converging to k, with u(ka) ¥= o}(k)

for all indices a. This is possible, because <o-1({co(A:)}) is a closed set of measure

zero, and hence has void interior. Then we have t ¥= I — o)(ka), and so y(ka)(t) =

x(ka)(t) -»tt x(/c)(f), which in turn yields x(k)(t) = y(k)(i)-   D
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2. Theorem. Let K and m be as above, V a Banach space, x: K-+V and

1 <p < oo. Then for the following conditions

(i) x extremal in C(K, V),

(ii) x extremal in Lœ(m, V),

(iii) x extremal in Lp(m, V) we have (i) => (ii) => (iii).

Proof. (ii)=>(iii) is essentially contained in Theorem 1 in [6]. Assume x is

extremal in the unit ball of 7.°°(/m, V), in particular ||x(-)|| = 1 almost everywhere,

and x =~(y + z) with y and z in the unit ball of Lp(m, V). Then the Clarkson

inequalities [3], applied to the functions ||y(-)\\ and ||z(-)|| in Lp(m), yield ||.y(-)ll

= IW*)!I = ll-*(')ll almost everywhere; hence y and z are in the unit ball of

L°°(m, V).

For (i) => (ii) assume x is extremal in the unit ball of C(K, V) and x = j( y + z)

with y and z in the unit ball of Lco(m, V). We look at y and z as functions rather

than equivalence classes, in such a way that the equality x(k) = \(y(k) + z(k))

holds everywhere (without loss of generality). Now an iterative application of

Egorov's theorem and of the regularity of m shows that y, as an m-almost uniform

limit of continuous simple functions, is continuous on a (disjoint) union U —

Ú„eN C„, with C„ clopen and 2„eN m(Cn) = 1. That means y and z are continu-

ous on the open complement U of a suitable w-null set. For each clopen subset C

of U, x\c is extremal in C(C, V); hence x\c = y\c. Thus x\v = y\w which means

x = y in L°°(m, V).   □

3. Corollary. The function f: [0, 1] -» W in Example 1, taking no extremal

vectors as values, is extremal in the unit ball of LP(X, W) for 1 <p < oo.

Proof. The mapping/ h>/ ° co is a linear isometry of LP(X, W) onto Z/(m, W).

D
4. Remarks, (a) An essential point in Theorem 2 was the fact that each Bochner

measurable function is continuous on a suitable open set with a null set as

complement. So it is not surprising that this theorem fails for A instead of m:

combine Johnson's result with the 4-dimensional Blumenthal-Lindenstrauss-Phelps

example.

(b) The construction of the isometry preceding Example 1 applies to arbitrary

finite (even infinite) measures p,

T:Lp(p,V)=Lp(mii,V),

and the proof of Theorem 2 holds for these measures m^, too. It would be

interesting to know whether in general a Banach space V "recognizes" the extremal

elements in Lp( p, V) (i.e., extremal functions x satisfy condition (2) above) if and

only if it recognizes those in Lp(mfi, V). Thus, if the above isometry T is not

induced by a point mapping to as in the case p = A, is it still true that the ranges of

x and Tx are essentially the same?
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