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TWO UC-SETS WHOSE UNION IS NOT A UC-SET

JOHN J. F. FOURNIER1

Abstract. It is shown that the union of two sets of uniform convergence need not

be a set of uniform convergence.

We use the standard terminology of harmonic analysis on the unit circle as in [41

We recall some notions discussed in [8] and [9], and in the references cited in these

papers.

Definition. Given a subset E of the integers, call an integrable function/ on the

circle, an E-function if fin) = 0 for all integers « outside E, and denote the space of

continuous ^-functions by CE. Call E a set of uniform convergence, or a UC-set, if

every function in CE has a uniformly convergent Fourier series.

The union problem for UC-sets is mentioned as an open problem in [5, p. 86; 9,

p. 283]. To solve it, we need a few more facts about UC-sets. It is known that Tí is a

UC-set if and only if there is a constant « so that, for each function / in CE, the

partial sums SN(f) of the Fourier series of/ satisfy the inequality HSVCDII» ̂

Kll/lloo for all nonnegative integers N. Furthermore, when Tí is a UC-set, there is a

smallest value of k for which the inequality above holds for all such / and N; this

smallest value of k is called the UC-constant of E, and is denoted by k(E). If Tí is a

UC-set, then so is every translate of E, but it turns out that the translates of a

UC-set do not all have to have the same UC-constant.

Definition. Call E a CUC-set, or a set of completely uniform convergence if E is a

UC-set   with   the   additional   property   that   the   sequence   {k(E + «)}"_x   is

bounded.

This notion was introduced, independently by G. Travaglini [9, Lemma 6] and F.

Ricci [7, p. 426]. In [8], P. M. Soardi and Travaglini gave some nontrivial examples

of CUC-sets, and they showed that if there is a UC-set that is not a CUC-set, then

there is a pair of UC-sets whose union is not a UC-set. In the present paper, we

exhibit a class of UC-sets that are not CUC-sets, thereby showing that the union of

two UC-sets need not be a UC-set.

Recall that a set 77 of positive integers is called a Hadamard set if there is a

constant r > 1 so that, when 77 is enumerated in increasing order as {k}í-i, then

hJ+x > rhj for ally. Also, if E and F are two sets of integers then E — F denotes the

set of all integers of the form m — « where m E E and n E F.
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Theorem. Let 77 be an infinite Hadamard set. Then 77 — 77 is a UC-set, but it is

not a CUC-set.

Proof. Let E = 77 - 77. To show that E is a UC-set, it suffices, by [9, Theorem

2], to show that the positive and negative parts of E are both UC-sets. Since E is

symmetric, it is enough to do this for the positive part of E. Finally, by [9, Theorem

3], it is enough to show that

sup  k(7i n [TV, 27V]) < oo.
Af>0

To this end, enumerate 77 in increasing order as [hJ}JLl, and let r > 1 be as in

the definition of Hadamard set. Fix a positive integer TV, and consider the indices y'

for which, for some index / < j, the difference fa — «, lies in the interval [TV, 2TV].

Let J be the smallest such index y ; then «y > TV. On the other hand, if j is any such

index, then, in particular,

27V > hj - hj_x > (r - \)hj_x > (r - l)rJ'x-JhJ > (r - \)rJ-J~xN.

Thus, j — J — 1 < log[2/(r — l)]/log r = L(r), say. It follows that there are at

most L(r) + 1 such indices j, and hence that E n [TV, 27V] is included in the union

of at most L(r) + 1 translates of the set -77. Therefore there is a constant C(r) so

that E n [TV, 2TV] has Sidon constant at most C(r), and k(E n [TV, 27V]) < C(r)

also. Thus, E is indeed a UC-set.

To see that E is not a CUC-set, fix a positive integer M, and consider the Hubert

matrix {Amn}%„_x given by letting

0 if m = «,

1tn,rt
otherwise.

m — n

Recall [3, Example 5.7] that the norm of A, as an operator on I2, is at most it.

Given a number 9 in the interval [0, 2m), let v(B) be the vector in CM with y'th

component v¡(9) = exp(/«,#) for all/', and let

f(9) = (v(9), Av(9)) =       I       —L^xpt/iT^ - h„)9].
n

Then/is an (T7 — T7)-polynomial. Moreover,

\f(9)\<\\A\\(\\v(9)\\2)2<7TM

for all 9, so that ||/J]W < wAT. On the other hand,

12
W-l   , \ Af-1

y-2 7 /      j-i

> M(log M - log 2) > (1 A)||/IL log(M/2).
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Let TV = hM, and let g(9) = f(9)exp(-iN9). Then g is an (E - «M)-polynomial,

and

\sN(g)\\e =  2 /(A:)>(l/Y>||g|Llog(M/2).
k>0

2   g(n)
\n\<N

Therefore, k(E - hM) > (l/m)log(M/2) for all AT, and E is not a CUC-set. See

Remark 3 below for another proof that E is not a CUC-set.

Remark. 1. Now that we have examples of UC-sets that are not CUC-sets, we

can, as pointed out in [8] easily construct pairs of UC-sets whose union is not a

UC-set. Indeed, let 77 = {«7}J1, be a Hadamard set for which in fact hJ+x > 2A-

for ally; given 77, let

A = {m: m = h¡ — hj + hk where i >j > k).

Then, by the proof of Proposition 2 of [8], the sets A and B are both UC-sets, but

A u B is not a UC-set.

2. A related example is suggested by an observation on p. 283 of [9]. Suppose

that, in the example above, the integers hj are all even, and let C = A u (73 — 1).

Then C is a UC-set, as is C + 1, but C u (C + 1) is not a UC-set, because it

includes A u B.

3. The second part of the proof of our theorem actually shows that if E and F

are two infinite sets of positive integers, then E — F is not a CUC-set. Here is an

amusing alternate proof of this implication. If E — F were a CUC-set, then, by [8,

Proposition 1], there would exist a measure ju such that

if « E E — F and n > 0,

if « E E - F and « < 0.

Enumerate the sets E and F as {«J,}JL, and {«,}°1, respectively, and, for each

index j, let <fy and \p¡ be the functions on [0, 2m) given respectively by / h>

exp(-/«i,i) and / h+ exp(+ /«,>); then

*»)-{;

l^(t)Ut) <¥(t) = Km, - nk) = i        .f  * < w
if m, > «fa-,

Let <i> and \p be accumulation points in Lx(d\ ¡i\) of the respective sequences {</>}jl,

and {i/'fc}".,. Then f<tnp dp can be approximated arbitrarily well by integrals of the

form ¡<¡npk dp., and any such integral can in turn be approximated arbitrarily well

by integrals of the form Jtyfa dfi, where m¡ > nk; hence j<¡>\p d¡i = 1. On the other

hand, by approximating d> first by <pp and then approximating \p by \pk, where

nk > mp one sees that f<fnp dp must also be equal to 0. This contradiction shows

that there is no such measure p., and hence that E — Fis not a CUC-set.

4. It follows from the implication above that, if E, F, and G are infinite sets of

positive integers, then E — F + G and E — F — G are not UC-sets. This contrasts

with the fact [9, Theorem 7] that, if £ is a Paley set, in other words a union of

finitely-many Hadamard sets, then E + E + E is a UC-set, as is E + E + E + E,

etc. In view of our main theorem, one might ask if E — E must be a UC-set

whenever E is a Paley set; the answer is "no", because there are pairs (Ex, E^ of

Hadamard sets for which Ex — E2 consists of all integers [5, p. 69]. In a similar
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vein, one can ask [9, p. 283] whether E + E must be a UC-set whenever E is a

dissociate set of positive integers; see [5, p. 19] for a definition of "dissociate". The

answer is again "no"; the proof uses Hubert matrices, and will appear in [2].

5. It is known [9, Lemma 6] that subsets of the positive integers that are UC-sets

are also CUC-sets. Therefore, the sets A and B considered in Remark 1 provide an

example of a pair of CUC-sets whose union is not even a UC-set.

6. Fix a strictly increasing sequence TV = {TV^.JJl, of positive integers, and call a

set E a UC(N)-set if for every function/in CE, the sequence {SN(f)}P\x converges

uniformly. It was pointed out by B.-Y. Ng [6] that when TV = {2J}f=x there are

pairs of UC(TV)-sets whose union is not a UC(TV)-set. In fact, the methods of the

present paper show that, for each such strictly increasing sequence TV, there is a

pair of CÜC-sets A and B, as in Remark 1, whose union is not a UC(TV)-set.

7. Given an index/) in the interval [1, oo), and a set E of integers, let LPE be the

subspace of all ¿-functions in L"(T). Call E an LPC-set if \\SN(f) - f\\p ->0 as

« -h> oo for all /in T_£. Again, E is an 7/C-set if and only if the quantity

kp(E) = sup¿N{\\SN(f)\\p: f E LPE, U/H, = 1, TV a nonnegative integer) is finite.

Finally, call E a CLpC-set if the sequence {kp(E + «)}"__,<, is bounded. These

notions are not interesting when 1 < p < oo, because the M. Riesz theorem shows

that every set is a C7/C-set in that case. It is not known, however, whether the

classes of L'C-sets or CL'C-sets are closed under finite unions. S. Hartman [private

communication] has observed that our examples shed some light on the relations

between these classes and the classes of UC-sets and CUC-sets. First, it is easy to

see that every UC-set is an L'C-set, and that every CUC-set is a CL'C-set. The

examples given in Remark 1 show that the converses to these implications are false.

Indeed, it is known [1, Theorem 5] that the set A u B is a A(2)-set; it follows that

A \j B is a. CL 'C-set although it is not a UC-set.

8. I am pleased to acknowledge that the main theorem of this paper resulted

from conversations with Ron Blei and Gordon Woodward. I have also benefited

from helpful comments by S. Hartman, E. Sawyer, P. M. Soardi, and G. Travaglini.
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