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REDUCTION THEOREMS FOR A CLASS

OF SEMILINEAR EQUATIONS AT RESONANCE

PETER W. BATES

Abstract. In solving equations of the form Lu — Nu = p in a Hubert space,

where L is linear and N is nonlinear, the alternative method can sometimes be used

to reduce the problem to one in a subspace. In this note previous reduction results

are extended and at the same time the proofs are simplified. The approach is to use

simple fixed point theorems in place of the traditional variational methods which

are often quite delicate.

1. Introduction. This note is to extend previous results by Castro [6], Bates and

Castro [3], Amann [1], Bates [2] and Mawhin [7, 8], while giving simpler proofs of

the results in [1, 2, 3]. An application of the abstract results shows that under

certain assumptions on g, the equation

y" + g(t + v) = c = constant

has no 2w-periodic solutions if c =£ 0 and if c = 0 has a continuum of such

solutions. This example was chosen because it seemed interesting; it is not a

general representative of the class of equations treated here. In fact the abstract

results below may be applied to semilinear elliptic and hyperbolic PDE's.

To proceed, let 77 be a (real or complex) Hubert space with inner product ( •, • )

and norm || • ||, let L be a linear operator in 77, TV be a nonlinear operator on 77

and let/? £ 77. Consider the question of solvability of

(1.1) Lu-Nu=p.

In [7] Mawhin has

Theorem A. Suppose L is selfadjoint with spectrum a and TV has a selfadjoint

Gâteaux derivative N'(u) which satisfies

(1.2) There exist numbers a < b with [a, b] (~) a = 0 and ai < N'(u) < bl for

each u E 77.
Then (1.1) is uniquely solvable with the solution depending (Upschitz) continuously

on p.
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The main theorem of this paper will contain as a special case

Theorem 1. Suppose L and TV are as above except (1.2) is replaced by:

(1.2)' For each u E H there exist numbers a(u) < b(u) with [a(u), b(u)] n a = 0

and such that a(u)I < N'(u) < b(u)I.

(1.2)" -oo < a = inf{a(w): u £ 77} < sup{b(u): u £ TT} =b < oo and for some

constants C > 0, d < (b — a)/2,

\\N(u) - (a + b)u/2\\ < </||u|| + C.

Then (1.1) has a unique solution.

Remark. The value of Theorem 1 over Theorem A is that [a, b] n a =£ 0 is

allowed; that is, the union of the numerical ranges of the operators N'(u), u E T7,

may have points of a in its closure.

Whereas the above theorems are existence results we are mainly concerned here

with reduction theorems associated with applying the alternative method to (1.1).

To be specific, suppose T7 has the orthogonal decomposition 77 = 77, © T72, with L

leaving 77, invariant. Let P¡ be the orthogonal projection onto 77,; then (1.1) is

equivalent to the system

(1.3a) Lux - PxN(ux + u2) = px,

(1.3b) Lu2 - P2N(ux + u2) = p2,

where for z E H, z, = P¡z E 77,. Under certain hypotheses on L and TV it may be

possible to solve (1.3b) once ux is fixed, in which case solvability of (1.1) is reduced

to solvability of (1.3a) with u2 = u2(ux) being the solution of (1.3b). Thus, we are

concerned with imposing conditions on L and TV so that (1.3b) has, for fixed ux, a

unique solution u2(ux) which depends continuously on «,. Theorems B and C below

are along these lines and are extended in Theorem 2. Suppose

(1.4) L is selfadjoint with spectrum a c (-oo, a — e] U [a, b] u [b + e, oo),

where a < b and e > 0;

(1.5) TV is a continuous gradient operator such that a\\u — v\\2 < (Nu — Nv,

u - v) < b\\u - v\\2 for u,v £ 77.

Now suppose {Ex} is the resolution of the identity associated with L and let

Px = /» dEK, P2 = 7 - Px and 77,. = 7>,77, i = 1, 2.

Theorem B (Amann [1]). Suppose (1.4) and (1.5) hold. Then for each ux E 77,,

(1.3b) has a unique solution u2(ux) E 772. Furthermore, u2 depends continuously upon

Hi-

Remark. In [1] Amann gave a variational proof of this result and in [8] Mawhin

has since given a much simpler proof. It was Mawhin's proof which inspired this

note.

A different theorem founded in [6] and improved in [3] and [2] involves

weakening the hypotheses on TV and strengthening those on L. Suppose

(1.6) The restriction of L to T72 has compact resolvent,

(1.7) TV is a continuous gradient operator such that, for u ¥=v, (a — e)||« — u||2

< (Nu - Nv,u - v) <(b + e)\\u - v\\2, and
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(1.8) lim suPh^JITVk - (a + b)u/2\\/\\u\\ < (b - à)/2 + e.

Theorem C. Suppose L satisfies (1.4) and (1.6) and that TV satisfies (1.7) and (1.8).

Then the conclusion of Theorem B holds.

Remark. Theorem C may be used to show that y" + sin v = p(t) has 27r-peri-

odic solutions for certain functionsp(t) where Theorem B fails to be of use.

Now suppose (perhaps after shifting L and TV so that a = -b in (1.4)):

(1.9) T7 has the orthogonal decomposition 77, © T72 with 77, invariant under the

closed operator L, and such that ||(7-,|W2)-I|| < 1// for some I > 0;

(1.10) For u^v, \\Nu - Nv\\ </||w- t>||.

(1.11) For some constants / < / and C > 0, ||7V«|| < T||«|| + C.

Let P¡ be the orthogonal projection onto 77,.

Theorem 2. Suppose that L and TV satisfy (1.9)—(1.11). Then for each ux £ 77,

there exists a unique u2(ux) E 772 satisfying (1.3b).

Lacking in this theorem is the continuity of u2(); however, suppose

(1.12) 772 has the orthogonal decomposition 773 © 774 with 77; invariant under L

(i = 3, 4), 773 finite dimensional and with ||(L|Ä^_I|| < 1//.

We have

Theorem 3. If (1.9)—(1.12) hold, then the function w2() given by Theorem 2 is

continuous.

Remarks. 1. Although it was not stated, Theorems B and C required 77 to be

real; Theorems 2 and 3 do not.

2. If L is self-adjoint (or normal) satisfying (1.4) (respectively, a c D((a + b)/2,

(b - a)/2) u Dc((a + b)/2, (b - a)/2 + e), where D(z, r) is the open disc in C

centered at z of radius r) then L — (a + ¿>)7/2 satisfies (1.9) with I = (b — a)/2 +

e and 77, chosen in the obvious way.

3. Condition (1.7) implies that TV - (a + b)I/2 satisfies (1.10) (see [4] or [8]) and

(1.11) follows from (1.8).

4. There is no compactness assumption on the resolvent of L and TV need not be

a gradient operator.

2. Proofs. Theorem 2 has a particularly simple proof using the following result of

F. Browder [5]:

Theorem D. Let B = {u: \\u\\ < R) and S = dB. Let T: B^H satisfy

\\Tu - Tv\\ < \\u - v\\ for all u,v E B and T(S) G B. Then T has a fixed

point in B.

Proof of Theorem 2. For fixed ux E 77„ rewrite (1.3b) as

u2 = L'x(P2N(ux + u2) + p2) m Tu2.

Note that

||7«2 - Tu2\\ < ||(L|H2)-'|| • ||TV(«, + u2) - N(ux + ü2)\\ < \\u2 - û2\\

for u2 ¥= m2, by (1.9) and (1.10). Thus, T is nonexpansive and any fixed point is
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unique. Finally, (1.11) implies

(2.1) \\Tu2\\/\\u2\\ < /// + (/||«,|| + C+ \\p2\\)/ (l\\u2\\).

Since ux is fixed, for ||w2|| = 7? sufficiently large, ||7w2|| < ||u2||- Theorem D

completes the proof.

Proof of Theorem 1. Condition (1.2)' implies that for each u E H there are

points c(u), d(u) E a u {a, b) such that (c(u), d(u)) n a = 0 and c(u) < a(u) <

b(u) < d(u). Actually, c and d do not depend upon u. This follows from an

extension of the "Intermediate Value Theorem for Derivatives" as outlined below.

Suppose c(ux) < (N'(ux)v, v) < d(ux) and 0(1/2) < (N^u^v, v) < d(u^ for all v E

H and suppose d(ux) < c(u2). Then [d(ux), 0(1*2)] is contained in the set

{(N'(u)v, v): « £ 77}, where v = u2 — ux. To see this, consider the continuous

functions/, g: (0, 1] —► R defined by

fit) = (N(u2 + t(ux - u2)) - N(u2), «, - u2)/t,

g(t) = (N(ux + t(u2 - «,)) - N(ux), u2 - ux)/t.

By the Mean Value Theorem (see [9]) we may write

(2.2) fit) = (7V'(z(0)(k, - u2), ux - u2),   g(t) = (N'(y(t))(u2 - ux), u2 - ux)

for some points z(t),y(t) lying on the line segment joining ux and u2. Now,/and g

are continuous at 0, and defined by /(0) = (TV'(m2)(w, — u^, ux — u^, g(0) =

(N'(ux)(u2 - «,), u2 - ux). Note also that/(l) = g(l), so that/([0, 1]) u g([0, 1]) is

connected, and by the representation (2.2), [ g(0), f(0)] is contained in

{(N'(u)(u2 — ux), u2 — ux): u lies on the line segment joining «, and u2).

For the sake of simplicity suppose a, b £ a. In Theorem 2 take I = (b — a)/2,

L = L - (b + a)I/2 in place of L, Ñ = TV - (b + a)I/2 in place of TV, T7, = {0},

772 = 77, / = d. It is easy to see that (1.9) and (1.11) hold. By the Mean Value

Theorem ||7Vw — TVu|| < ||TV'(z)|| • \\u — v\\ for some z on the line segment joining

u and v. Now N'(z) is selfadjoint and a - (a + b)/2 < a(z) — (a + b)/2 <

(N'(z)v, v) < b(z) -(a + b)/2 < b - (a + b)/2, so ||TV'(z)|| < (b - a)/2 and

(1.10) holds. This completes the proof.

Proof of Theorem 3. Write (1.3b) as

(2.3) Lu3 - P3N(ux + u3 + u4) = p3,

(2.4) Lu4 - P4N(ux + u3+ u4) = p4,

where u2 = u3 + u4, p2 = p3 + p4 E H3 © 774, and P¡ is the orthogonal projection

onto 77,, i = 3, 4. Fix «, + u3 E 77, © 773 and consider (2.4) rewritten as u4 =

(l\hX\P4N(ui + "3 + «4) + P4) = Ku4. From conditions (1.10) and (1.12) it is

easy to see that K is a strict contraction, and has, by the Contraction Mapping

Theorem, a unique fixed point u4(ux + u3). Furthermore, u4: 77, © 773 —» T74 is

Lipschitz continuous. Now, from Theorem 2, we know that (2.3), (2.4) has a unique

solution for fixed ux. Write this as u2(ux) = u3(ux) + u4(ux). The uniqueness implies

that it4(ux) = u4(ux + u3(ux)). Therefore, in order to prove that u2: 77, —> H2 is

continuous, it suffices to show that u3: 77, —> H3 is continuous. From (2.1) it

follows that m, —> u2(ux) takes bounded sets into bounded sets and so the same is
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true of the mapping w3(). Suppose that {«,"} c 77, converges to «,. Then since

dim 773 < oo we may assume that a subsequence has been taken so that {u3(u")}

converges to a point u3 £ 773. Since TV and u4( ■ ) are continuous and L is closed, it

follows that u3 and u4(ux + u3) satisfy (2.3) and (2.4). The uniqueness of the

solution implies u3 = u3(ux). It follows that u3, and hence u2, is continuous.

3. An example. Consider the problem

(3.1) v" + g( y + t) = c = constant,

(3.2) v(0) - y(2m) = y'(0) - y'(2m) = 0,

where g is a differentiable 27r-periodic function satisfying

(3.3) \g'(x)\ < 1    for all x ER,

(3.4) {x: \g'(x)\ = 1} has measure zero,

(3.5) j    g(s) ds = 0.

We will show that for c ^ 0 this problem has no solution while for c = 0 there is a

continuum of solutions. Let 77 = L2(0, 2m), 77, = R, 7*, the projection defined by

Pxf = j^Jl^fix) dx, P2 = I - PX,H2 = P2H. Let L be the closure of the operator

Lq defined by dom LQ = {y £ C2[0, 2w]: v(0) - y(2m) = v'(0) - y'(2m) = 0}, L0y

= - v". Then L is selfadjoint with spectrum a = {&2: A: = 0, 1, ... } and Ker L

= 77,. Let TV be given by TV(/) = g(y + t). Then TV is continuous on 77 and, with

/ = 1, satisfies (1.10), for if y i= z £ 77,

||TVv - TVz||2 = \1\g(y(t) + t) - g(z(t) + t)f dt
Jo

= j[2*[j[V(x(0 + < + !<*(*) - »(0)) dsj(y(t) - z(t)f dt.

On a set of positive measure y(t) ¥= z(t) and hence, for such values of t, (3.4)

implies \g'(z(t) + t + s(y(t) - z(t)))\ < 1 a.e. for s E [0, 1]. This gives (1.10).

Using (3.3) and (3.5) it can be shown (integrate by parts) that | g(x)\ < \ \x\ + C for

C sufficiently large; hence, (1.11) is valid. Clearly (1.9) holds and also (1.12) with

773 = span{sin t, cos /} and 774 =span{sin kt, cos kt: k = 2, 3, . . . }. By Theo-

rems 2 and 3, there exists a continuous function w2: R —» T72 so that (3.1), (3.2) has

a solution if and only if there exists a constant x such that

(3.6) g(x) = ±- Cmg(t + x + u2(x)(t)) dt = c.
¿m J0

We now show that g = 0, i.e., if c i*0, (3.1), (3.2) has no solution. This implies

that if c = 0, x + u2(x)(t) solves (3.1), (3.2) for each x £ R. In general, u2(x) i=

u2(z) when x^zso the continuum of solutions is not merely a translate of R in

77 = R + 772. Suppose v solves (3.1), (3.2). Multiplying (3.1) by 1 + /(/) and

integrating over [0, /] gives

y'(t) + y'\t)/2 + G(t + y(t)) - cy(t) + D = ct.

where D is a constant and G' = g. Now divide by t and let r tend to infinity. Since

v and v' are bounded (27r-periodic) and G(t + y(t))/t -* 0 by (3.5), we must
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conclude that c = 0. Actually, this shows that if c =£ 0 there are no solutions y of

(3.1) for which v and v' are bounded.

I would like to thank Professor F. Odeh for pointing out that (3.1), (3.2) has no

solutions in the case c ¥= 0 with g(x) s sin x.
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