CONVERGING FACTORS FOR CONTINUED FRACTIONS

$K\left(a_{n} / 1\right), \quad a_{n} \rightarrow 0$
JOHN GILL

Abstract

Converging factors for continued fractions $K\left(a_{n} / 1\right)$ are used to enhance convergence either by accelerating the convergence process or by altering the region of convergence if the a_{n} 's are functions of a complex variable. The first results concerning the use of converging factors to accelerate convergence in the important case $a_{n} \rightarrow 0$ are presented in this paper.

The approximants, A_{n} / B_{n}, of the continued fraction

$$
\begin{equation*}
\frac{a_{1}}{1}+\frac{a_{2}}{1}+\cdots+\frac{a_{n}}{1}+\cdots \tag{1}
\end{equation*}
$$

where each a_{n} is a nonzero complex number, can be generated in the following way.

Let $t_{n}(z)=a_{n} /(1+z), n \geqslant 1$, and $T_{1}(z)=t_{1}(z), T_{n}(z)=T_{n-1}\left(t_{n}(z)\right), n \geqslant 2$. Then $A_{n} / B_{n}=T_{n}(0), n \geqslant 1$. Let us assume that (1) converges, i.e. $\operatorname{Lim}_{n \rightarrow \infty} T_{n}(0)=$ T exists.
Complex numbers μ_{1}, μ_{2}, \ldots are called converging factors of (1) provided

$$
\operatorname{Lim}_{n \rightarrow \infty} T_{n}\left(\mu_{n}\right)=\operatorname{Lim}_{n \rightarrow \infty} T_{n}(0)=T .
$$

For limit-periodic continued fractions (1) (i.e., $a_{n} \rightarrow a$ as $n \rightarrow \infty$), something is known about converging factors that accelerate convergence. See, e.g., $[2,3,6$, and 7]. However, these investigations are restricted to the case $a \neq 0$. In this paper the case $a=0$ is considered.

The following theorem [2] is a generalization of a theorem appearing in [4] and is basic to the study of converging factors of limit-periodic fractions. Set $a_{n}=$ $\alpha_{n}\left(\alpha_{n}+1\right)$, where $\left|\alpha_{n}\right|<\left|\alpha_{n}+1\right|, n \geqslant 1$, and $\operatorname{Lim}_{n \rightarrow \infty} a_{n}=a=\alpha(\alpha+1)$, where $|\alpha|<|\alpha+1|$. The imposed conditions established by the inequalities imply $a_{n} \neq-\frac{1}{4}$, and $a \neq-\frac{1}{4}$.

Theorem 1.

$$
\underline{\operatorname{Lim}}\left|\mu_{n}-(\alpha+1)\right|>0 \Rightarrow \operatorname{Lim}_{n \rightarrow \infty} T_{n}\left(\mu_{n}\right)=\operatorname{Lim}_{n \rightarrow \infty} T_{n}(0)
$$

In [3] the author developed a geometrical approach to the use of converging factors of the form $\mu_{n} \equiv \alpha$ for accelerating convergence of certain limit-periodic fractions. The elementary techniques involved gave fairly accurate truncation error estimates. Waadeland, in essence, employed $\mu_{n} \equiv \alpha$ in his study of limit-periodic T-fractions [7]. More recently, Thron and Waadeland [6] reported the far more general result that follows.

Theorem 2. Let $a_{n} \rightarrow a \neq 0,\left|\arg \left(a+\frac{1}{4}\right)\right|<\pi$. Assume that, for all $n>1, \mid a_{n}-$ $a \left\lvert\, \leqslant \min \left\{\frac{1}{2}\left(\left|a+\frac{1}{4}\right|+\frac{1}{4}-|a|\right),|a| / 2\right\}\right.$. Set $d_{n}=\max _{m>n}\left|a_{m}-a\right|$. Then

$$
\left|\frac{T-T_{n}(\alpha)}{T-T_{n}(0)}\right|<2 d_{n} \frac{|a|+\left|\frac{1}{2}+a+\sqrt{\frac{1}{4}+a}\right|}{|a|\left(\frac{1}{4}+\left|\frac{1}{4}+a\right|-|a|\right)}, \quad \operatorname{Re}\left(\sqrt{\frac{1}{4}+a}\right)>0
$$

Set

$$
T_{k}^{(n)}=\frac{a_{n+1}}{1}+\frac{a_{n+2}}{1}+\cdots+\frac{a_{n+k}}{1}, \quad n \geqslant 0, k \geqslant 1
$$

and $T^{(n)}=\operatorname{Lim}_{k \rightarrow \infty} T_{k}^{(n)}, n \geqslant 0$, provided these limits exist. Let $T=T^{(0)}$. Then $T^{(n)}$ is the "tail end" of (1), and it is natural to use α as a constant converging factor, since $T^{(n)} \rightarrow \alpha$ as $n \rightarrow \infty$. See, e.g., [5, p. 286].

However, this very convenient factor fails to be of any value if $a=0(\alpha=0)$, for we then have merely the traditional approximants of (1). Under certain circumstances the converging factors $\mu_{n}=\alpha_{n+1}, n \geqslant 1$, accelerate convergence in this special case. The use of the α_{n} notation instead of the a_{n} notation facilitates progress in this direction, since the α_{n} 's are the attractive fixed points of the t_{n} 's $[1$, pp. 6-21] and the geometrical approach to the convergence behavior of (1) initiated by this concept has proven to be of value in the past [3].

A "reluctant" convergence of $\left\{\alpha_{n}\right\}$ to 0 sets the stage for the advantageous use of these converging factors. Here $\alpha_{n}=-\frac{1}{2}+\sqrt{\frac{1}{4}+a_{n}}, \operatorname{Re} \sqrt{\frac{1}{4}+a_{n}}>0$.

Theorem 3. If (i) $\max _{m>n}\left|\alpha_{m}-\alpha_{m+1}\right| \leqslant \varepsilon_{n}\left|\alpha_{n+1}\right|, n=1,2, \ldots$, where $0<\varepsilon_{n} \leqslant$ 1 , and (ii) $0<\left|\alpha_{m}\right|<\sigma_{n}<\frac{1}{5}, m \geqslant n, n=1,2, \ldots$, are satisfied, then

$$
\left|T_{n}\left(\alpha_{n+1}\right)-T\right|<\frac{\sigma_{n} \varepsilon_{n}}{\left(1-5 \sigma_{n}\right)^{2}} \cdot\left|T_{n}(0)-T\right|
$$

where $\operatorname{Lim}_{n \rightarrow \infty} \sigma_{n}=0$.
Proof. Let $h_{1}=1$,

$$
h_{n}=1+\frac{a_{n}}{1}+\frac{a_{n-1}}{1}+\cdots+\frac{a_{2}}{1}, \quad n \geqslant 2 .
$$

The following equation is easily obtained (see [6]).

$$
\begin{equation*}
\left|\frac{T-T_{n}\left(\alpha_{n+1}\right)}{T-T_{n}(0)}\right|=\left|\frac{T^{(n)}-\alpha_{n+1}}{T^{(n)}}\right| \cdot\left|\frac{h_{n}}{h_{n}+\alpha_{n+1}}\right| \tag{2}
\end{equation*}
$$

Let us first consider the expression $\left|T^{(n)}-\alpha_{n+1}\right|$ in (2). Set $\rho_{m-1}=T^{(m-1)}-\alpha_{m}$, $d_{m}=\left|\alpha_{m+1}+1\right|-\left|\alpha_{m}\right|, \quad f_{m}=\left|\alpha_{m}\left(\alpha_{m}-\alpha_{m+1}\right)\right|, \quad D_{n}=\min _{m>n} d_{m}$, and $F_{n}=$ $\max _{m>n} f_{m}, m \geqslant 1, n \geqslant 1$. Then

$$
\begin{equation*}
\left|\rho_{m-1}\right|=\left|\frac{\alpha_{m}\left(\alpha_{m}+1\right)}{1+T^{(m)}}-\alpha_{m}\right| \leqslant \frac{\left|\alpha_{m}\right|\left(\left|\alpha_{m}-\alpha_{m+1}\right|+\left|\rho_{m}\right|\right)}{\left|1+\alpha_{m+1}\right|-\left|\rho_{m}\right|} . \tag{3}
\end{equation*}
$$

As in [6], we wish to find $R_{n}>0$ such that $\mid \rho_{m} \leqslant R_{n}$ for $m \geqslant n$. Assuming $\left|\rho_{m}\right| \leqslant R_{n}$ in (3), we have

$$
\left|\rho_{m-1}\right| \leqslant \frac{\left|\alpha_{m}\right|\left(\left|\alpha_{m}-\alpha_{m+1}\right|+R_{n}\right)}{\left|1+\alpha_{m+1}\right|-R_{n}}
$$

The expression on the right is $<R_{n}$ provided $f_{m}<d_{m} R_{n}-R_{n}^{2}$. Since $f_{m} \leqslant F_{n}$ and $D_{n} \leqslant d_{m}$ for $m>n, f_{m} \leqslant d_{m} R_{n}-R_{n}^{2}$ if $F_{n} \leqslant D_{n} R_{n}-R_{n}^{2}$. This last inequality is satisfied if $R_{n}=F_{n} D_{n} /\left(D_{n}^{2}-2 F_{n}\right)$, as can be routinely verified by showing that $\left|\alpha_{n}\right|<\frac{1}{5}$ implies $4 F_{n}<D_{n}^{2}$.

Now, $\operatorname{Lim}_{n \rightarrow \infty} T^{(n)}=0$ and $\operatorname{Lim}_{n \rightarrow \infty} \alpha_{n+1}=0$ imply $\operatorname{Lim}_{m \rightarrow \infty} \rho_{m}=0$. Hence, there exists $k>0$ for fixed m and $n(m \geqslant n)$ such that $\left|\rho_{m+k}\right|<R_{n}$. Then $\left|\rho_{m-1}\right| \leqslant R_{n}$; i.e., $\left|T^{(m-1)}-\alpha_{m}\right| \leqslant R_{n}, m \geqslant n$.

Turning now to the first factor in the right side of (2),

$$
\left|\frac{T^{(n)}-\alpha_{n+1}}{T^{(n)}}\right|=\frac{1}{\left|\frac{\alpha_{n+1}}{T^{(n)}-\alpha_{n+1}}+1\right|}<\frac{1}{\left|\frac{\alpha_{n+1}}{T^{(n)}-\alpha_{n+1}}\right|-1}
$$

we see that

$$
\begin{aligned}
\left|\frac{T^{(n)}-\alpha_{n+1}}{\alpha_{n+1}}\right| & <\frac{R_{n}}{\left|\alpha_{n+1}\right|} \\
& <\frac{\max _{m>n}\left|\alpha_{m}-\alpha_{m+1}\right|}{\left|\alpha_{n+1}\right|} \cdot \max _{m>n}\left|\alpha_{m}\right| \cdot \frac{D_{n}}{D_{n}^{2}-2 F_{n}}<\varepsilon_{n} \sigma_{n} \cdot \frac{1}{1-4 \sigma_{n}}
\end{aligned}
$$

since $1-2 \sigma_{n} \leqslant D_{n} \leqslant 1$ and $F_{n} \leqslant 2 \sigma_{n}^{2}$. Therefore,

$$
\begin{equation*}
\left|\frac{T^{(n)}-\alpha_{n+1}}{T^{(n)}}\right|<\frac{\varepsilon_{n} \sigma_{n}}{1-5 \sigma_{n}} \tag{4}
\end{equation*}
$$

Inverting the second factor in (2),

$$
\begin{equation*}
\left|\frac{h_{n}+\alpha_{n+1}}{h_{n}}\right| \geqslant 1-\frac{\left|\alpha_{n+1}\right|}{\left|h_{n}\right|} \geqslant 1-2\left|\alpha_{n+1}\right|>1-2 \sigma_{n} \tag{5}
\end{equation*}
$$

since $\left|h_{n}\right| \geqslant \frac{1}{2}$ in the Worpitzy circle, $a_{n} \in\left\{z:|z|<\frac{1}{4}\right\}$ [8, p. 60], and condition (ii) implies $\left|a_{n}\right|<\frac{1}{4}$. Combining (4) and (5) gives the conclusion of Theorem 3.

Example. Let $\left|\alpha_{1}\right|<10^{-3}$ and $\alpha_{n}=(.52)^{n-1} \alpha_{1}$ for $n>2$. Then $\varepsilon_{n}<9.3 \times 10^{-1}$ and $\sigma_{n}=(.52)^{n-1} \times 10^{-3}$ for $n \geqslant 2$. Theorem 3 gives, e.g.,

$$
\left|T_{2}\left(\alpha_{3}\right)-T\right|<4.9 \times 10^{-4}\left|T_{2}(0)-T\right|
$$

and

$$
\left|T_{10}\left(\alpha_{11}\right)-T\right|<2.6 \times 10^{-6}\left|T_{10}(0)-T\right| .
$$

In general, if the α_{n} 's are quite small, then an improvement on the order of magnitude of $\left|\alpha_{1}\right|$ occurs in the first calculation.

References

1. L. Ford, Automorphic functions, 2nd ed., Chelsea, New York, 1951.
2. J. Gill, Modifying factors for sequences of linear fractional transformations, Norske Vid. Selsk. Skr. (Trondheim) 1978, no. 3.
3. J. Gill, The use of attractive fixed points in accelerating the convergence of limit periodic continued fractions, Proc. Amer. Math. Soc. 47 (1975), 119-126.
4. A. Magnus and M. Mandel, On convergence of sequences of linear fractional transformations, Math. Z. 115 (1970), 11-17.
5. O. Perron, Die Lehre von den Kettenbrüchen. Band 2, 3rd ed., Teubner, Stuttgart, 1957.
6. W. Thron and H. Waadeland, Accelerating convergence of limit periodic continued fractions $K\left(a_{n} / 1\right)$, Numer. Math. 34 (1980), 155-170.
7. H. Waadeland, A convergence property of certain T-fraction expansions, Norske. Vid. Selsk. Skr. (Trondheim) 1966, no. 9.
8. H. Wall, Analytic theory of continued fractions, Van Nostrand, New York, 1948.

Department of Mathematics, University of Southern Colorado, Pueblo, Colorado 81001

