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RELATIVE WEAK CONVERGENCE IN

SEMIFINITE VON NEUMANN ALGEBRAS

VICTOR KAFTAL

Abstract. An operator is compact relative to a semifinite von Neumann algebra,

i.e., belongs to the two-sided closed ideal generated by the finite projections relative

to the algebra, if and only if it maps vector sequences converging weakly relative to

the algebra into strongly converging ones (generalized Hilbert condition). The

generalized Wolf condition characterizes the class of almost Fredholm operators.

Introduction. The elements of the two-sided closed ideal $ generated by the

projections finite relative to a von Neumann algebra & are called compact

operators of 6£ and it has been shown (see [7, 4]) that they satisfy many of the

properties of the compact operators on a Hilbert space. The weak convergence of

vectors plays an important role in classical operator theory. The aim of this paper

is to study a relative weak (RW) convergence that could play an analogous role in

the operator theory relative to a semifinite von Neumann algebra.

A bounded sequence of vectors x„ is defined to converge RW to x if Px„ —* Px
s

for every projection P finite relative to &.

This convergence is shown to be not equivalent (apart from trivial cases) to weak

or strong convergence. The classical Hilbert characterization is extended to the

compact operators of & and a generalized Wolf property (see [8]) is used to

characterize a new class ?F+ called almost left-Fredholm [5]. We remark that the

RW convergence can be used, in analogy with Calkin's construction (see [2]), to

obtain a representation of the generalized Calkin algebra &/%.

Finally a RW topology is defined on the unit ball of the predual of & and both

the generalized Hilbert and Wolf properties are reformulated in a space-free

setting.

The author wishes to thank M. Sonis, L. Brown and P. Fillmore for valuable

suggestions.

1. The relative weak convergence. Let 77 be a Hilbert space, let 7.(77) be the

algebra of all bounded linear operators on 77, let & be a semifinite von Neumann

algebra on 77 and <3'(&) be the set of the projections of &. Let % be the ideal of

compact operators (relative to &), i.e., the norm closed two-sided ideal of &

generated by the finite projections of &. It is known that $ is proper iff S, is
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infinite and that it is the maximal two-sided ideal of & which does not contain

infinite projections (see Breuer [1] and for further properties Kaftal [4] and Sonis

[7])-
Since a projection is finite relative to the algebra 7.(77) iff it is finite in the

euclidean sense, i.e., iff it is a finite sum of one-dimensional projections, a sequence

xn E 77 converges weakly to x (x„ -* x) if and only if, for every projection P finite

relative to 7.(77), Px   converges strongly to Px (Px„^Px). This suggests the
s

following generalization:

Definition 1. We say that a sequence xn E 77 converges to x weakly relative to

â (xn -» x) if ||x„|| is bounded and if, for every projection P E 9(a) finite relative

to ê, Px.-*Px.

Let us note that a weakly convergent sequence is necessarily bounded, but as the

following example shows, there are unbounded sequences satisfying the second

part of Definition 1.

Example 2. Let 77 and K be infinite-dimensional separable Hilbert spaces with

orthonormal bases {e„}, {/„} respectively and let C(K) be the factor of the scalar

multiples of the identity IK on K. Then & = L(H) 0 C(K) is an infinite von

Neumann factor of type I and xn = ~22!„ e¡ 0 f¡ is an unbounded sequence. Let P

be a finite protection of &. Then there is a finite projection P0 in 7.(77) such that

P = P0 0 IK and without loss of generality we may assume that it is one-dimen-

sional, i.e., that 7*0 = (•, e)e for a unit e E 77. Then ||i>jcB||2 = 221J|7V,||2||/I|2 =

22lJ(e*,, e)|2-»0. Let us further use this setting to note that the sequences en 0 f

and e 0 f„ are converging to zero, the first one RW but not strongly, the second

weakly but not RW.

We shall analyze now the relations between the RW convergence and the other

convergences in 77. Our main tool shall be

Proposition 3. Let Q E 9(&) be infinite. Then there is an orthonormal sequence

x„ -> 0 in OH." RW *

Proof. Since Q is infinite there is a Q' = 2"=0 ô. < Ô with Qn E ^(ff) and

on ~ oo ** 0 for every n. As & is semifinite, there is a finite 0 ¥= R < Q0 in <?((£).

Let 0¥^y0 E RH and let P0 = Ey¡¡(&') E & be the cyclic projection on >>0. Then

0 ¥= P0 < R < Qo and P0 too is finite. Let Pn < Q„ be the image of P0 under the

equivalence Q0— Q„, let U„ E & be the partial isometry mapping P0H onto PnH

and let P' = 2"_0 P„ < Q. Since &Pg, which we shall identify with P0<£P0 G &, is

finite and has a separating vector y0, then it has a nonzero trace vector x0 (see

Theorem 4 III 1, Proposition 1 I 6 and Theorem 1 I 4, Dixmier [3]). We can choose

||x0|| = 1 and define x„ = UnxQ E P„H. Then x„ is an orthonormal sequence in

P'H G QH. We are going to prove that xn -» 0. Define </> = S"_0 "^ where

ux(A) = (Ax, x). It is easy to see that f/> is a semifinite normal trace on (<£P.) . Let

S E <$(&) be finite. Since ||SxJ|2 = (P'SP'x„, x„), assume that S < P'. Apply

Lemma 1 by Peligrad and Zsido' [6] to S, <f> and &P. and find a set of mutually

orthogonal central projections Ey of sum the identity of &P. such that ^{SEy) < oo
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for every y E T. As 1 = ||x0||2 = 2yer||7iYx0||2, for every e > 0 we can find a finite

index set A c T such that 2y8aII-E,"*oII2 < e/2. Consider

ll^nll2 = 2 II^SxJI2 = 2 \\SEyxn\\2 + 2 \\SEyx„\\2.
yer y£A y?A

Then

2  \\SEyxn\\2<  2  l|£yt/„x0||2=  2 \\UnEyx0\\2
y«A ySA y€A

=  2  ll^oll2 < e/2
Y«A

since the U„ are partial isometries and commute with the Ey. On the other hand

<KSEy) = 2~_0 <^,(S7<Y) = Sr.oll^^nll2 < « ; therefore \\SEyxn\\ ->0 for every

y. Thus 2YeA||S7iYxn||2 < e/2 for n > N, which implies ||Sx„||2 < e for every

n > N, i.e., Sx„->0.    Q.E.D.

Theorem 4. (a) 77ie strong convergence implies the RW convergence, which in turn

implies the weak convergence.

(b) The strong convergence and the RW convergence coincide if and only if & is

finite.

(c) The weak convergence and the R W convergence coincide if and only if all the

finite projections of & have finite euclidean dimension.

Proof. The first implication in (a) is obvious. Let x„ —» x. Because of the
RW

semifiniteness of &, the identity 7 E & can be decomposed into a sum 7 =

Syer Py of mutually orthogonal finite projections (see Proposition 7, Corollary 1

III 2, Dixmier [3]). For every y E T we have Pyx„ -» 7* x and hence for every
' s       r

y E 77, we have (x„, Pyy) —► (x, Pyy). As the linear envelope of Uy£TPyH is

strongly dense in 77 = 2yer © PyH and as ||xj| is bounded by definition, we have

x„^>x. Since 7 G 9(&) is finite iff & is finite, (b) is an obvious corollary of

Proposition 3.

(c) Let us assume that all the finite projections of & have finite euclidean

dimension. If xn -> x and P E 'éP(cB) is finite, then ||x || is bounded and T'x. —» T'x;
W S

hence x„ -» x. Moreover, because of (a), if x_ —» x, then x„ -» x. On the other
RW RW w

hand, if the weak and the RW convergences coincide, then every finite projection

has finite euclidean dimension. Otherwise there would be in its range an infinite

orthonormal sequence weakly but surely not RW converging to zero.   Q.E.D.

Remark 5. It is easy to see that a von Neumann algebra satisfies condition (c) iff

it is the sum of a finite number of type I factors with finite commutant.

Because of (a) the RW limit is unique and it is also easy to see that subsequences

of RW converging sequences RW converge to the same limit. All that however

would be false if the algebra were not semifinite. In type III algebras, for instance,

the second part of the definition would "disappear" and any bounded sequence

would "converge" to every vector of 77.
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We can now extend to von Neumann algebras some well-known classical

properties of the weak convergence and of the compact operators.

Proposition 6. (a) If K E % and x„ —> x, then Kx„ -» Kx.
V  '   J * " RW "   s

(b) If A E 6? and x„ -* x, then Ax„ -»• Ax." RW RW

Proof, (a) Without loss of generality we can assume that x = 0. K satisfies the

generalized Rellich condition, i.e., for every i) > 0 there isa? 6 $*(&) such that

|| TO» || < r/ and 7 - P is finite (see Theorem 1.3, [4]). Thus (7 - 7>)xn-»0 and

hence 7C(7 - P)xn^>0. As \\K - K(I - P)\\ < tj and ||x„|| is bounded by défini-

tion, we have 7tx„ —» 0.
s

(b) If P E <$(&) is finite, PA E % and hence P(Ax„) -h> P(Ax), i.e., Ax„ -> Ax.

Q.E.D.
Part (a) of this proposition shows that the RW convergence could be equiva-

lently defined in terms of compact operators instead of finite projections. The

following theorem is a generalization of Hubert's characterization of the compact

operators.

Theorem 7. A is compact in & iff it maps RW converging sequences into strongly

converging ones.

Proof. Let §• be the set of the operators of & mapping RW converging

sequences into strongly converging ones. By Proposition 6(a) we have to prove

only that \ c %. From Proposition 6(b) it easily follows that \ is a two-sided ideal

of &. If Kn E | and ||7i - K„\\ -»0, then for every sequence xm -* 0, ||AjcJ| <

IK*JI + II*" - K\\ IK.fl- Since ||xj| is bounded, Kxm-*0; heneen E | and |
is norm closed. Let Q E & be any infinite projection and take an orthonormal

sequence x„ -> 0 in the range of Q. Then Qxn = xn-f+0. Thus Q Í f-, which
RW Jw _

implies that f contains finite projection only; hence % G% and thus \ = f.

Q.E.D.
Let us recall that Calkin's construction of his representation of L(H)/% (see [2])

relies essentially on Hubert's characterization of the compact operators of 7.(77).

Theorem 7 shows that this characterization remains valid in semifinite von Neu-

mann algebras. Thus by extending Calkin's construction to & we can obtain a

representation of &/%. Most of this extension is routine adaptation of the original

proofs to von Neumann algebras; therefore we omit it and refer the reader to [2].

2. The generalized Wolf Property. Wolf characterized in [8] the operators of

7,(77) that are not left-Fredholm as those operators A for which there is a sequence

xn —» 0, but x„ -r* 0 such that Axn -» 0.

Left-Fredholm operators are defined in general von Neumann algebras as the

operators left invertible mod % and are shown to satisfy most of the classical

properties (see [1, 4]). However if we replace in Wolf's Theorem the weak with the

RW convergence, we obtain a characterization of a new class of &.
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Theorem 8. Let A E &. Then the following conditions are equivalent:

(a) There is an infinite P G <$(&) such that AP E f.

(b) There is an orthonormal sequence x„ -» 0 such that Axn -»0.
RW s

(c) There is a sequence xn -» 0, but xn -t* 0, such that Ax„ —» 0.
RW s s

Proof, (a) implies (b) since by Proposition 3 applied to P we can find an

orthonormal sequence x„ -» 0 in 7*77, and by Proposition 6(a), APx„ = Axn —>0.
RW s

(b) implies obviously (c). Assume (c) and assume first that A > 0. Let E be the

spectral measure of A, let Qn = £[0, \), Pn = Q„ - Qn+X, and P0 = NA = E[0].

Then Qn = P0 + 2jl„ Pp If P0 is infinite then AP0 = 0 G %. Assume P0 is finite.

Then P0x„ -> 0 and as x„ -t* 0, we have (7 - P¿)xn -s+ 0. Therefore there is an a > 0

and a subsequence x^ such that ||(7 - P0)x„k\\ > a. Let zk = (\\(I — 7>0)xnt||)"1

• (7 - P0)x^. For every finite P E 9{&) we have \\Pzk\\ <¿||7>(7 - 7>0)xJ| ^0

as (7 - P0)x„ -* 0 by Proposition 6(b). Moreover
* RW

\\Azk\\ <±U(i-r¿*J -ïll^ll->o.

Since

\\Azk\\> \\A(I - Qm)zk\\ > i\\(I - Qm)zk\\

and since we can find for every m an index km such that ||^*J| < I/2m2, we

have ||(7 — ßm).z*J| < l/2w. Choose km monotone. Moreover ||ßm^||2 = 1 —

\\(I - QJ^ÏÏ2 > 1 - l/4m2; hence ||ßmzt|| >'{, Let ym"(\\QmzkJrxQmzkm.

Then for every finite P E <3>(6B)

11^-11 < nPQm^W < 2||7>zJ| + 2||7>(7 - QjZkm\\ < 2\\PzJ\ +±.

As ^¿^0, we have Pym-*0. Thus ym E (Qm - P¿H, || vj| = 1 and vm¿+0.

Consider 1 = ||ö, v,||2 = 2~_.||7>,).y1||2. Then there is an TV, < oo such that

2i'i"11||7>nv,||2 >{-. Since & is semifinite, we can find finite projections Fn < P„

such that \\F„yx\\2 >\\\Pnyx\\2 for 1< » < 2V, - 1. Thus Rx = S*",1 Fn < Qx, Rx

is finite and \\Rxyx\\ >{. Consider now 1 = Hß^^JI2 = 2~_itfl||^tJ'jVl||2. Repeat

the same construction and find N2 < oo and finite Fn < Pn for Nx < n <

7V2 - 1 such that, for R2 = 2^L"/, Fn < QN¡, \\R2yNt\\ >{-. Note that R2 is finite

and orthogonal to Rx. By iterating, construct a sequence of mutually orthogonal

finite projections Rk < Qk such that \\Rk+xyN \\ >\- Let R = S"_! 7Î*. Since

II^aJI > II^a+i^nJI >i> we nave ^„-^0- Hence 7? £ £ and thus 7? is infinite.

On the other hand R = "2™=x Fn where Fn < Pn are finite and as

AR - A 2 F,
n-l

a IK \AQ& < J

we see that AR can be approximated in norm by the compact operators A~2¿~JX Fn;

hence AR G $-. Finally note that if A is not positive then we can consider

|j4| = (A*A)l/2. Then A = U\A\ and since \\Axn\\ = \\ \A\x„\\ -»Owe can apply the

result obtained above to \A\ and find an infinite 7? G <3'(&) such that \A\R E f.

Then.47? = U\A\R E %.   Q.E.D.
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Let us denote by 3F+ the left-Fredholm class and by ÍF+ the complement of the

class characterized by Theorem 8, i.e., the class §+ = {A G â: P G <$(&), AP G

f=*P G %}.
In 7,(77), 5+ = 5+ (Wolf Theorem [8]); however for general von Neumann

algebras §+ c *+ and the inclusion is proper unless éE is semifinite and has a

nonlarge center (see [5]). Since 5+ satisfies all the "algebraic" properties of l3r+, we

call it the almost left-Fredholm class and we further study it in [5].

Remark 9. In this paper we were interested in treating compact elements of a

von Neumann algebra in a Hilbert space operator theoretic way. However, both

the compact and Fredholm (or almost Fredholm) classes are defined without

reference to a Hilbert space representation and thus we can reformulate Theorems

7 and 8 in a space-free way. Let &m be the predual of a semifinite von Neumann

algebra &. Let us call RW the topology a((&Jx, &(â) n %) on the unit ball of &«,.

Then we have

Theorem 7'. A E f iff f„(A)-+f(A) for every sequence fn E (â^)x such that

Theorem 8'. A £ #+ iff there is a sequence /„ G ((£*)," such that ||/„|| = 1,

fn-t0andf„(A*A)^0.

These theorems can be proven with the same techniques as Theorems 7 and 8:

use Proposition 3 by noting that if & has a representation on the Hilbert space H,

then x„ E (77), and x„ -> 0 iff w^ G (ffi,),+ and u>^ -> 0.
RW *" *' *"RW
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