PROOF OF A CONJECTURE OF ERDÖS ABOUT THE LONGEST POLYNOMIAL

B. D. BOJANOV

Abstract

In 1939 P. Erdös conjectured that the Chebyshev polynomial $T_{n}(x)$ has a maximal arc-length in $[-1,1]$ among the polynomials of degree n which are bounded by 1 in $[-1,1]$. We prove this conjecture for every natural n.

1. Introduction. P. Erdös proved in [2] that the function $\cos n t$ has a maximal arc-length in $[-\pi, \pi]$ among all trigonometric polynomials of order n with a uniform norm equal to 1 . He has conjectured that the Chebyshev polynomial

$$
T_{n}(x)=\cos (n \arccos x), \quad-1 \leqslant x \leqslant 1,
$$

is the unique extremal function in the corresponding analogous problem in the set π_{n} of algebraic polynomials of degree less than or equal to n.

Denote by $l(f)$ the arc-length of the function f in $[-1,1]$, i.e.,

$$
l(f):=\int_{-1}^{1}\left[1+f^{\prime 2}(x)^{2}\right]^{1 / 2} d x
$$

Set $\|f\|=\max \{|f(x)|:-1 \leqslant x \leqslant 1\}$.
Conjecture of Erdös. The quantity

$$
\sup \left\{l(f): f \in \pi_{n},\|f\| \leqslant 1\right\} \quad(n=1,2, \ldots)
$$

is attained if and only if $f= \pm T_{n}$.
This conjecture has remained an open problem for over 40 years. In a recent work Szabados [4] showed that the polynomials T_{n} are asymptotically extremal as $n \rightarrow \infty$. We prove here the conjecture of Erdös for each natural number n. Our proof is based on a variational approach.
2. Explanatory statement. The problem of Erdös is set for the domain $[-1,1] \times$ $[-1,1]$, i.e., for the class of polynomials $f \in \pi_{n}$ such that $|f(x)| \leqslant 1$ if $|x| \leqslant 1$. One may guess that the solution $f(x)$ in this particular case suffices to construct the solution $f(M ; x)$ of the corresponding problem about the longest polynomial in the domain $[-1,1] \times[-M, M]$ for every $M>0$. One even suggests the following simple formula:
(*)

$$
f(M ; x)=M f(x) .
$$

It turns out (see Theorem 1) that (*) is actually true. But this is not evident. The problem (*) is as difficult as that of Erdös. In any case, the relatioin (*) yields easily the conjecture of Erdös. Indeed, suppose that (*) holds for every $M>0$.

[^0]Key words and phrases. Arc-length, Chebyshev polynomial, extremal problem for polynomials.

Then

$$
\frac{1}{M} \int_{-1}^{1}\left[1+M^{2} g^{\prime 2}(x)\right]^{1 / 2} d x \leqslant \frac{1}{M} \int_{-1}^{1}\left[1+M^{2} f^{\prime 2}(x)\right]^{1 / 2} d x
$$

for each $M>0$, provided $g \in \pi_{n}$, and $\|g\| \leqslant 1$. If we let M tend to infinity, we get $\int_{-1}^{1}\left|g^{\prime}(x)\right| d x \leqslant \int_{-1}^{1}\left|f^{\prime}(x)\right| d x$. Thus, f should have a maximal variation in $[-1,1]$. Therefore $f= \pm T_{n}$.

Finally, note that the problem on an arbitrary interval $[a, b]$ is easily reduced to the problem on $[-1,1]$ by a linear transformation.
3. Main result. In what is to follow, let M be a fixed positive number. With every natural number n we associate the set $\Omega_{n} \subset \pi_{n}$ which is defined as follows. The polynomial $f \in \pi_{n}$ belongs to Ω_{n} if there exist $m+1$ points $\left\{x_{i}\right\}_{0}^{m}(m \in$ $\{1, \ldots, n\}$) such that

$$
\begin{gathered}
-1=x_{0}<x_{1}<\cdots<x_{m-1}<x_{m}=1, \\
\left|f\left(x_{i}\right)\right|=M, \quad i=0, \ldots, m \\
f\left(x_{i}\right)=-f\left(x_{i+1}\right), \quad i=0, \ldots, m-1
\end{gathered}
$$

and $f(x)$ is a monotone function in $\left[x_{i}, x_{i+1}\right], i=0, \ldots, m-1$. It is clear that $\|f\|=M$ if $f \in \Omega_{n}$.

The basic idea of our proof is presented in the following lemma.
Lemma 1. Suppose that $f \in \pi_{n},\|f\|=M$ and

$$
l(f)=\sup \left\{l(g): g \in \pi_{n},\|g\| \leqslant M\right\}
$$

Then $f \in \Omega_{n}$.
Proof. Without loss of generality we assume that $f(x)>0$ for each sufficiently large $x>0$. Denote by $\left\{x_{i}\right\}_{1}^{m-1}$ the distinct zeros of $f^{\prime}(x)$ in $(-1,1)$. Obviously $m \leqslant n$. Set, for convenience, $x_{0}=-1, x_{m}=1, \omega(x)=f^{\prime}(x)$. We shall show that

$$
\begin{equation*}
f\left(x_{i}\right)=(-1)^{m-1} M, \quad i=0, \ldots, m \tag{1}
\end{equation*}
$$

This implies that $f \in \Omega_{n}$.
Introduce the polynomials

$$
g_{i}(x)=\left(x^{2}-1\right) \omega(x) /\left(x-x_{i}\right), \quad i=0, \ldots, m
$$

We intend to estimate the arc-length $\sigma_{i}(\varepsilon):=l\left(f+\varepsilon g_{i}\right)$ for small ε. Our first task is to show that

$$
\begin{equation*}
\sigma_{i}^{\prime}(0)>0 \tag{2}
\end{equation*}
$$

for $i=0, \ldots, m$. It is seen that

$$
\sigma_{i}^{\prime}(0)=\int_{-1}^{1} \frac{\omega(x)}{\left[1+\omega^{2}(x)\right]^{1 / 2}} g_{i}^{\prime}(x) d x
$$

In the case $i=0$ a straightforward calculation gives

$$
\sigma_{0}^{\prime}(0)=2\left[1+\omega^{2}(-1)\right]^{1 / 2}-\int_{-1}^{1}\left[1+\omega^{2}(x)\right]^{-1 / 2} d x>0
$$

Similarly, $\sigma_{m}^{\prime}(0)>0$. Now suppose that $1 \leqslant i \leqslant m-1$. Integrating by parts, we get

$$
\sigma_{i}^{\prime}(0)=\int_{-1}^{1} \frac{x^{2}-1}{x-x_{i}}\left\{\left[1+\omega^{2}(x)\right]^{-1 / 2}\right\}^{\prime} d x
$$

The integrand is a continuous function in $[-1,1]$. Therefore $\sigma_{i}^{\prime}(0)<\infty$ and $\sigma_{i}^{\prime}(0)=$ $\lim \left\{\mathscr{T}_{i}(\delta): \delta \rightarrow 0\right\}$ where

$$
\mathscr{T}_{i}(\delta)=\int_{\Omega(\delta)} \frac{x^{2}-1}{x-x_{i}}\left\{\left[1+\omega^{2}(x)\right]^{-1 / 2}\right\}^{\prime} d x
$$

and $\Omega(\delta):=\left[-1, x_{i}-\delta\right] \cup\left[x_{i}+\delta, 1\right]$. Next we calculate $\mathscr{T}_{i}(\delta)$. Observe first that $\omega\left(x_{i} \pm \delta\right)=O(\delta)$. This yields, for instance, by Taylor's formula, that

$$
\begin{equation*}
\left[1+\omega^{2}\left(x_{i} \pm \delta\right)\right]^{-1 / 2}=1+O\left(\delta^{2}\right) \tag{3}
\end{equation*}
$$

Further, by the mean-value theorem for integrals, there exist points $\xi_{1}=\xi_{1}(\delta) \in$ $\left[-1, x_{i}-\delta\right]$ and $\xi_{2}=\xi_{2}(\delta) \in\left[x_{i}+\delta, 1\right]$ such that

$$
\begin{align*}
& \int_{-1}^{x_{i}-\delta}\left[1+\omega^{2}(x)\right]^{-1 / 2}\left(x-x_{i}\right)^{-2} d x=c_{1}(\delta)\left[1 / \delta-1 /\left(1+x_{i}\right)\right], \\
& \int_{x_{i}+\delta}^{1}\left[1+\omega^{2}(x)\right]^{-1 / 2}\left(x-x_{i}\right)^{-2} d x=c_{2}(\delta)\left[1 / \delta-1 /\left(1-x_{i}\right)\right] \tag{4}
\end{align*}
$$

where $c_{j}(\delta)=\left[1+\omega^{2}\left(\xi_{j}\right)\right]^{-1 / 2}, j=1,2$. Obviously

$$
\begin{equation*}
0<c_{j}(\delta) \leqslant 1, \quad j=1,2 . \tag{5}
\end{equation*}
$$

Let us set, for convenience, $A(\delta)=\int_{\Omega(\delta)}\left[1+\omega^{2}(x)\right]^{-1 / 2} d x$. Now, taking into account the relations (3) and (4), after integration by parts, we obtain

$$
\begin{aligned}
\mathscr{T}_{i}(\delta)= & {\left.\left[\left(x^{2}-1\right) /\left(x-x_{i}\right)\right]\left[1+\omega^{2}(x)\right]^{-1 / 2}\right|_{x_{i}+\delta} ^{x_{i}-\delta} } \\
& -\int_{\Omega(\delta)}\left[1+\omega^{2}(x)\right]^{-1 / 2}\left\{1+\left(1-x_{i}^{2}\right) /\left(x-x_{i}\right)^{2}\right\} d x \\
= & \delta^{-1}\left[c_{1}(\delta)+c_{2}(\delta)-2\right]\left(x_{i}^{2}-1\right)+O(\delta)-A(\delta) \\
& -c_{1}(\delta)\left(x_{i}-1\right)+c_{2}(\delta)\left(x_{i}+1\right) .
\end{aligned}
$$

But, as we have already mentioned, $\mathscr{T}_{i}(\delta)$ has a limit as $\delta \rightarrow 0$. Then $c_{1}(\delta)+c_{2}(\delta)$ must tend to 2 , which combined with (5) implies $c_{j}(\delta) \rightarrow 1, j=1,2$, as $\delta \rightarrow 0$. Moreover, $c_{j}(\delta)=1-\alpha_{j} \delta+o(\delta), j=1,2$, with some constants $\alpha_{j} \geqslant 0$. Therefore

$$
\sigma_{i}^{\prime}(0)=\lim \left\{\mathscr{T}_{i}(\delta): \delta \rightarrow 0\right\}=-A(0)+2-\left(\alpha_{1}+\alpha_{2}\right)\left(x_{i}^{2}-1\right)>0 .
$$

Our claim (2) is proved.
Now, let us assume that f does not belong to Ω_{n}. Then there exists at least one point $x_{i} \in\left\{x_{0}, \ldots, x_{m}\right\}$ such that $\left|f\left(x_{i}\right)\right|<M$. Consider the polynomial $\varphi_{e}(x):=f(x)+\varepsilon g_{i}(x)$. Evidently, $l\left(\varphi_{\varepsilon}\right)=\sigma_{i}(\varepsilon)=\sigma_{i}(0)+\varepsilon \sigma_{i}^{\prime}\left(t_{e}\right)=l(f)+\varepsilon \sigma_{i}^{\prime}\left(t_{e}\right)$ where $0<t_{\varepsilon}<\varepsilon$. But, according to (2), there eixsts an $\varepsilon_{0}>0$ such that $\sigma:=\min \left\{\sigma_{i}^{\prime}(t): 0 \leqslant t \leqslant \varepsilon_{0}\right\}>0$. Therefore

$$
\begin{equation*}
l\left(\varphi_{\varepsilon}\right) \geqslant l(f)+\sigma \varepsilon \tag{6}
\end{equation*}
$$

for each $\varepsilon \in\left[0, \varepsilon_{0}\right]$.

Let us estimate the uniform norm of φ_{e} in $[-1,1]$ for small ε. In order to do this, it suffices to investigate the function $\varphi_{\varepsilon}(x)$ near the points $\left\{x_{j}\right\}$ for which $\left|f\left(x_{j}\right)\right|=$ M. Let x_{k} be such a point. Without loss of generality we may assume that $f\left(x_{k}\right)=M$. Suppose that h is chosen to satisfy the requirement $x_{j} \notin\left[x_{k}-h, x_{k}+\right.$ $h] \cap[-1,1]=: B\left(x_{k} ; h\right)$ for every $j \neq k$. Let $\varphi_{e}(x)$ attain its maximal value in the neighbourhood $B\left(x_{k} ; h\right)$ of x_{k} at the point $z_{k}(\varepsilon)$. On expanding $\varphi_{\varepsilon}(x)$ in a partial Taylor series around $x=x_{k}$, we get

$$
\varphi_{\varepsilon}\left(z_{k}(\varepsilon)\right) \leqslant M+\varepsilon\left\|g_{i}^{\prime}\right\|\left|z_{k}(\varepsilon)-x_{k}\right|
$$

for sufficiently small $\varepsilon>0$. It is not difficult to see that $\left|z_{k}(\varepsilon)-x_{k}\right| \rightarrow 0$ as $\varepsilon \rightarrow 0$. Then, in view of the last inequality, $\left\|\varphi_{\varepsilon}\right\| \leqslant M+\varepsilon \delta(\varepsilon)$, where $\delta(\varepsilon)$ is a function which tends to zero as $\varepsilon \rightarrow 0$. Now construct the polynomial

$$
\psi_{\ell}(x)=\left(1-\frac{\varepsilon \delta(\varepsilon)}{M+\varepsilon \delta(\varepsilon)}\right) \varphi_{\varepsilon}(x)
$$

Clearly, $\psi_{e} \in \pi_{n}$ and $\left\|\psi_{\varepsilon}\right\| \leqslant M$. We shall show that $l\left(\psi_{\varepsilon}\right)>l(f)$ for small $\varepsilon>0$. Indeed, since $L:=\partial l(\lambda f) /\left.\partial \lambda\right|_{\lambda=1}>0$, we have $l\left(\psi_{\varepsilon}\right)>l\left(\varphi_{e}\right)-(2 L / M) \varepsilon \delta(\varepsilon)$ for small $\varepsilon>0$. Next we apply (6) and get

$$
l\left(\psi_{\varepsilon}\right)>l(f)+[\sigma-(2 L / M) \delta(\varepsilon)] \varepsilon>l(f)
$$

for sufficiently small $\varepsilon>0$. Thus, f is not extremal, a contradiction. Therefore $\left|f\left(x_{i}\right)\right|=M$ for $i=0, \ldots, m$. Since $\left\{x_{i}\right\}_{1}^{m-1}$ are all distinct zeros of $f^{\prime}(x)$ in ($-1,1$), we conclude that (1) is valid. The lemma is proved.

It remains to show that the extremal polynomial f must have $n+1$ points of alternation. For this, we give below an interesting property of the Chebyshev polynomial $T_{n}(x)$.

Let $\left\{\theta_{k}\right\}_{0}^{n}$ be the extremal points of $T_{n}(x)$ in [$\left.-1,1\right]$. It is well known (see Rivlin [3]) that $\theta_{0}=-1, \theta_{n}=1$ and $T_{n}\left(\theta_{k}\right)=(-1)^{n-k}, k=0, \ldots, n$. Suppose that $f \in \Omega_{n}$ and $f^{\prime}(x)$ has $m-1$ distinct zeros x_{1}, \ldots, x_{m-1} in ($-1,1$). Evidently, there is an $i \in\{0, \ldots, m-1\}$ such that $x_{i}<0<x_{i+1}$. Consider the partition of $[-1,1]$ into subintervals $\left[x_{0}, x_{1}\right], \ldots,\left[x_{i}, 0\right],\left[0, x_{i+1}\right], \ldots,\left[x_{m-1}, x_{m}\right]$ which we denote, for simplicity, by I_{0}, \ldots, I_{m}, respectively. Define the points t_{1} and t_{2} by the conditions

$$
\begin{aligned}
t_{1} \in\left[\theta_{i}, \theta_{i+1}\right], & M T_{n}\left(t_{1}\right)=f(0) \\
t_{2} \in\left[\theta_{i+n-m}, \theta_{i+n-m+1}\right], & M T_{n}\left(t_{2}\right)=f(0)
\end{aligned}
$$

Denote the intervals $\left[\theta_{0}, \theta_{1}\right], \ldots,\left[\theta_{i}, t_{1}\right],\left[t_{2}, \theta_{i+n-m+1}\right], \ldots,\left[\theta_{n-1}, \theta_{n}\right]$ by $I_{0}^{*}, \ldots, I_{\boldsymbol{m}}^{*}$. We shall refer to I_{k}^{*} as the corresponding interval to I_{k}.

Lemma 2. Suppose that f is a polynomial from the set Ω_{n} with $m+1$ extremal points, $\alpha \in(-M, M)$ and $k \in\{0, \ldots, m\}$. Let the points ξ and η satisfy the conditions

$$
\xi \in I_{k}^{*}, \quad M T_{n}(\xi)=\alpha, \quad \eta \in I_{k}, \quad f(\eta)=\alpha
$$

Then $\left|f^{\prime}(\eta)\right| \leqslant M\left|T_{n}^{\prime}(\xi)\right|$.
The assertion follows easily from a known extremal property of $\cos n t$. The proof is given with details in [1].

We are now prepared to prove the main theorem.
Theorem 1. Let n be an arbitrary natural number. Then, for each $M>0$, the quantity

$$
\sup \left\{l(f): f \in \pi_{n},\|f\| \leqslant M\right\}
$$

is attained if and only if $f= \pm M T_{n}$.
Proof. Note first that the inequality $|d| \leqslant|c|$ implies

$$
\begin{equation*}
\left(1+c^{2}\right)^{1 / 2} \leqslant\left(1+d^{2}\right)^{1 / 2}+|c|-|d| . \tag{7}
\end{equation*}
$$

We shall make use of this in the sequel. Suppose that $f \in \Omega_{n}$ and $[-1,1]=I_{0}$ $\cup \cdots \cup I_{m}$ is the partition of $[-1,1]$ induced by f. Let the intervals $I=\left[z_{1}, z_{2}\right]$ and $I^{*}=\left[z_{1}^{*}, z_{2}^{*}\right]$ be corresponding. Denote by $u(y)$ and $v(y)$ the inverse functions of $f(x)$ and $M T_{n}(x)$ in I and I^{*}, respectively. According to Lemma 2, we have $\left|v^{\prime}(y)\right| \leqslant\left|u^{\prime}(y)\right|$ for each $y \in(-M, M)$. Then, applying (7), we get
$\int_{-M}^{M}\left[1+u^{\prime 2}(y)\right]^{1 / 2} d y \leqslant \int_{-M}^{M}\left[1+v^{\prime 2}(y)\right]^{1 / 2} d y+\int_{-M}^{M}\left|u^{\prime}(y)\right| d y-\int_{-M}^{M}\left|v^{\prime}(y)\right| d y$.
Denote by $l(g ; K)$ the arc-length of g over the set K. Then the above inequality means that $l(f ; I) \leqslant l\left(M T_{n} ; I^{*}\right)+\left|z_{2}-z_{1}\right|-\left|z_{2}^{*}-z_{1}^{*}\right|$. Summing for $I=$ I_{0}, \ldots, I_{m}, we obtain

$$
l(f) \leqslant l\left(M T_{n} ;\left[-1, t_{1}\right] \cup\left[t_{2}, 1\right]\right)+t_{2}-t_{1} \leqslant l\left(M T_{n}\right) .
$$

The equality holds if and only if $t_{1}=t_{2}$, i.e., iff $f= \pm M T_{n}$. The theorem is proved.
4. Acknowledgments. The author is grateful to his colleagues K. Ivanov, S. Dodunekov, M. Petkov and V. Todorov for discussions and comments.

References

[^1]Department of Mathematics, University of Sofia, 1126 Sofia, Bulgaria

[^0]: Received by the editors January 13, 1981.
 1980 Mathematics Subject Classification. Primary 41A17, 49A27.

[^1]: 1. B. D. Bojanov, An extension of the Markov inequality, J. Approx. Theory (submitted).
 2. P. Erdös, An extremum-problem concerning trigonometric polynomials, Acta Sci. Math. Szeged 9 (1939), 113-115.
 3. T. J. Rivlin, The Chebyshev polynomials, Wiley, New York, 1974.
 4. J. Szabados, On some extremum problems for polynomials, Proc. Conf. Approximation and Function Spaces (Gdansk 1979), PWN, Warsaw (to appear).
