PROOF OF A CONJECTURE OF ERDÖS ABOUT THE LONGEST POLYNOMIAL

B. D. BOJANOV

ABSTRACT. In 1939 P. Erdös conjectured that the Chebyshev polynomial $T_n(x)$ has a maximal arc-length in [-1, 1] among the polynomials of degree n which are bounded by 1 in [-1, 1]. We prove this conjecture for every natural n.

1. Introduction. P. Erdös proved in [2] that the function $\cos nt$ has a maximal arc-length in $[-\pi, \pi]$ among all trigonometric polynomials of order n with a uniform norm equal to 1. He has conjectured that the Chebyshev polynomial

$$T_n(x) = \cos(n \arccos x), \quad -1 \le x \le 1,$$

is the unique extremal function in the corresponding analogous problem in the set π_n of algebraic polynomials of degree less than or equal to n.

Denote by l(f) the arc-length of the function f in [-1, 1], i.e.,

$$l(f) := \int_{-1}^{1} \left[1 + f'^{2}(x)^{2} \right]^{1/2} dx.$$

Set $||f|| = \max\{|f(x)|: -1 \le x \le 1\}.$

CONJECTURE OF ERDÖS. The quantity

$$\sup\{l(f): f \in \pi_n, ||f|| \le 1\} \qquad (n = 1, 2, ...)$$

is attained if and only if $f = \pm T_n$.

This conjecture has remained an open problem for over 40 years. In a recent work Szabados [4] showed that the polynomials T_n are asymptotically extremal as $n \to \infty$. We prove here the conjecture of Erdös for each natural number n. Our proof is based on a variational approach.

2. Explanatory statement. The problem of Erdös is set for the domain $[-1, 1] \times [-1, 1]$, i.e., for the class of polynomials $f \in \pi_n$ such that $|f(x)| \le 1$ if $|x| \le 1$. One may guess that the solution f(x) in this particular case suffices to construct the solution f(M; x) of the corresponding problem about the longest polynomial in the domain $[-1, 1] \times [-M, M]$ for every M > 0. One even suggests the following simple formula:

$$f(M; x) = Mf(x).$$

It turns out (see Theorem 1) that (*) is actually true. But this is not evident. The problem (*) is as difficult as that of Erdös. In any case, the relation (*) yields easily the conjecture of Erdös. Indeed, suppose that (*) holds for every M > 0.

Received by the editors January 13, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 41A17, 49A27.

Key words and phrases. Arc-length, Chebyshev polynomial, extremal problem for polynomials.

Then

$$\frac{1}{M} \int_{-1}^{1} \left[1 + M^{2} g^{\prime 2}(x) \right]^{1/2} dx \le \frac{1}{M} \int_{-1}^{1} \left[1 + M^{2} f^{\prime 2}(x) \right]^{1/2} dx$$

for each M > 0, provided $g \in \pi_n$, and $||g|| \le 1$. If we let M tend to infinity, we get $\int_{-1}^{1} |g'(x)| dx \le \int_{-1}^{1} |f'(x)| dx$. Thus, f should have a maximal variation in [-1, 1]. Therefore $f = \pm T_n$.

Finally, note that the problem on an arbitrary interval [a, b] is easily reduced to the problem on [-1, 1] by a linear transformation.

3. Main result. In what is to follow, let M be a fixed positive number. With every natural number n we associate the set $\Omega_n \subset \pi_n$ which is defined as follows. The polynomial $f \in \pi_n$ belongs to Ω_n if there exist m+1 points $\{x_i\}_0^m$ $(m \in \{1, \ldots, n\})$ such that

$$-1 = x_0 < x_1 < \cdots < x_{m-1} < x_m = 1,$$

$$|f(x_i)| = M, \qquad i = 0, \dots, m,$$

$$f(x_i) = -f(x_{i+1}), \qquad i = 0, \dots, m-1$$

and f(x) is a monotone function in $[x_i, x_{i+1}]$, i = 0, ..., m-1. It is clear that ||f|| = M if $f \in \Omega_n$.

The basic idea of our proof is presented in the following lemma.

LEMMA 1. Suppose that $f \in \pi_n$, ||f|| = M and

$$l(f) = \sup\{l(g): g \in \pi_n, ||g|| \le M\}.$$

Then $f \in \Omega_n$.

PROOF. Without loss of generality we assume that f(x) > 0 for each sufficiently large x > 0. Denote by $\{x_i\}_1^{m-1}$ the distinct zeros of f'(x) in (-1, 1). Obviously $m \le n$. Set, for convenience, $x_0 = -1$, $x_m = 1$, $\omega(x) = f'(x)$. We shall show that

(1)
$$f(x_i) = (-1)^{m-1}M, \quad i = 0, \ldots, m.$$

This implies that $f \in \Omega_n$.

Introduce the polynomials

$$g_i(x) = (x^2 - 1)\omega(x)/(x - x_i), \quad i = 0, ..., m.$$

We intend to estimate the arc-length $\sigma_i(\varepsilon) := l(f + \varepsilon g_i)$ for small ε . Our first task is to show that

$$\sigma_i'(0) > 0$$

for i = 0, ..., m. It is seen that

$$\sigma'_i(0) = \int_{-1}^1 \frac{\omega(x)}{[1 + \omega^2(x)]^{1/2}} g'_i(x) dx.$$

In the case i = 0 a straightforward calculation gives

$$\sigma_0'(0) = 2[1 + \omega^2(-1)]^{1/2} - \int_{-1}^{1} [1 + \omega^2(x)]^{-1/2} dx > 0.$$

Similarly, $\sigma'_m(0) > 0$. Now suppose that $1 \le i \le m - 1$. Integrating by parts, we get

$$\sigma_i'(0) = \int_{-1}^1 \frac{x^2 - 1}{x - x_i} \left\{ \left[1 + \omega^2(x) \right]^{-1/2} \right\}' dx.$$

The integrand is a continuous function in [-1, 1]. Therefore $\sigma'_i(0) < \infty$ and $\sigma'_i(0) = \lim \{ \Im_i(\delta) : \delta \to 0 \}$ where

$$\mathfrak{I}_{i}(\delta) = \int_{\Omega(\delta)} \frac{x^{2} - 1}{x - x_{i}} \left\{ \left[1 + \omega^{2}(x) \right]^{-1/2} \right\}' dx$$

and $\Omega(\delta) := [-1, x_i - \delta] \cup [x_i + \delta, 1]$. Next we calculate $\mathfrak{I}_i(\delta)$. Observe first that $\omega(x_i \pm \delta) = O(\delta)$. This yields, for instance, by Taylor's formula, that

(3)
$$\left[1 + \omega^2(x_i \pm \delta) \right]^{-1/2} = 1 + O(\delta^2).$$

Further, by the mean-value theorem for integrals, there exist points $\xi_1 = \xi_1(\delta) \in [-1, x_i - \delta]$ and $\xi_2 = \xi_2(\delta) \in [x_i + \delta, 1]$ such that

(4)
$$\int_{-1}^{x_i - \delta} [1 + \omega^2(x)]^{-1/2} (x - x_i)^{-2} dx = c_1(\delta) [1/\delta - 1/(1 + x_i)],$$

$$\int_{x_i + \delta}^{1} [1 + \omega^2(x)]^{-1/2} (x - x_i)^{-2} dx = c_2(\delta) [1/\delta - 1/(1 - x_i)]$$

where $c_i(\delta) = [1 + \omega^2(\xi_i)]^{-1/2}, j = 1, 2$. Obviously

(5)
$$0 < c_j(\delta) \le 1, \quad j = 1, 2.$$

Let us set, for convenience, $A(\delta) = \int_{\Omega(\delta)} [1 + \omega^2(x)]^{-1/2} dx$. Now, taking into account the relations (3) and (4), after integration by parts, we obtain

$$\mathfrak{I}_{i}(\delta) = \left[(x^{2} - 1) / (x - x_{i}) \right] \left[1 + \omega^{2}(x) \right]^{-1/2} \left| x_{i} - \delta \right| \\
- \int_{\Omega(\delta)} \left[1 + \omega^{2}(x) \right]^{-1/2} \left\{ 1 + \left(1 - x_{i}^{2} \right) / (x - x_{i})^{2} \right\} dx \\
= \delta^{-1} \left[c_{1}(\delta) + c_{2}(\delta) - 2 \right] \left(x_{i}^{2} - 1 \right) + O(\delta) - A(\delta) \\
- c_{1}(\delta)(x_{i} - 1) + c_{2}(\delta)(x_{i} + 1).$$

But, as we have already mentioned, $\Im_i(\delta)$ has a limit as $\delta \to 0$. Then $c_1(\delta) + c_2(\delta)$ must tend to 2, which combined with (5) implies $c_j(\delta) \to 1$, j = 1, 2, as $\delta \to 0$. Moreover, $c_i(\delta) = 1 - \alpha_i \delta + o(\delta)$, j = 1, 2, with some constants $\alpha_i \ge 0$. Therefore

$$\sigma'_i(0) = \lim \{ \Im_i(\delta) : \delta \to 0 \} = -A(0) + 2 - (\alpha_1 + \alpha_2)(x_i^2 - 1) > 0.$$

Our claim (2) is proved.

Now, let us assume that f does not belong to Ω_n . Then there exists at least one point $x_i \in \{x_0, \ldots, x_m\}$ such that $|f(x_i)| < M$. Consider the polynomial $\varphi_{\epsilon}(x) := f(x) + \epsilon g_i(x)$. Evidently, $l(\varphi_{\epsilon}) = \sigma_i(\epsilon) = \sigma_i(0) + \epsilon \sigma_i'(t_{\epsilon}) = l(f) + \epsilon \sigma_i'(t_{\epsilon})$ where $0 < t_{\epsilon} < \epsilon$. But, according to (2), there exists an $\epsilon_0 > 0$ such that $\sigma := \min\{\sigma_i'(t): 0 \le t \le \epsilon_0\} > 0$. Therefore

(6)
$$l(\varphi_{\varepsilon}) \geq l(f) + \sigma \varepsilon$$

for each $\varepsilon \in [0, \varepsilon_0]$.

Let us estimate the uniform norm of φ_{ϵ} in [-1, 1] for small ϵ . In order to do this, it suffices to investigate the function $\varphi_{\epsilon}(x)$ near the points $\{x_j\}$ for which $|f(x_j)| = M$. Let x_k be such a point. Without loss of generality we may assume that $f(x_k) = M$. Suppose that h is chosen to satisfy the requirement $x_j \notin [x_k - h, x_k + h] \cap [-1, 1] =: B(x_k; h)$ for every $j \neq k$. Let $\varphi_{\epsilon}(x)$ attain its maximal value in the neighbourhood $B(x_k; h)$ of x_k at the point $z_k(\epsilon)$. On expanding $\varphi_{\epsilon}(x)$ in a partial Taylor series around $x = x_k$, we get

$$\varphi_{\varepsilon}(z_k(\varepsilon)) \leq M + \varepsilon ||g_i'|| ||z_k(\varepsilon) - x_k||$$

for sufficiently small $\varepsilon > 0$. It is not difficult to see that $|z_k(\varepsilon) - x_k| \to 0$ as $\varepsilon \to 0$. Then, in view of the last inequality, $\|\varphi_{\varepsilon}\| \le M + \varepsilon \delta(\varepsilon)$, where $\delta(\varepsilon)$ is a function which tends to zero as $\varepsilon \to 0$. Now construct the polynomial

$$\psi_{\varepsilon}(x) = \left(1 - \frac{\varepsilon \delta(\varepsilon)}{M + \varepsilon \delta(\varepsilon)}\right) \varphi_{\varepsilon}(x).$$

Clearly, $\psi_{\epsilon} \in \pi_n$ and $\|\psi_{\epsilon}\| \le M$. We shall show that $l(\psi_{\epsilon}) > l(f)$ for small $\epsilon > 0$. Indeed, since $L := \partial l(\lambda f)/\partial \lambda|_{\lambda=1} > 0$, we have $l(\psi_{\epsilon}) > l(\varphi_{\epsilon}) - (2L/M)\epsilon\delta(\epsilon)$ for small $\epsilon > 0$. Next we apply (6) and get

$$l(\psi_{\varepsilon}) > l(f) + [\sigma - (2L/M)\delta(\varepsilon)]\varepsilon > l(f)$$

for sufficiently small $\varepsilon > 0$. Thus, f is not extremal, a contradiction. Therefore $|f(x_i)| = M$ for $i = 0, \ldots, m$. Since $\{x_i\}_1^{m-1}$ are all distinct zeros of f'(x) in (-1, 1), we conclude that (1) is valid. The lemma is proved.

It remains to show that the extremal polynomial f must have n + 1 points of alternation. For this, we give below an interesting property of the Chebyshev polynomial $T_n(x)$.

Let $\{\theta_k\}_0^n$ be the extremal points of $T_n(x)$ in [-1, 1]. It is well known (see Rivlin [3]) that $\theta_0 = -1$, $\theta_n = 1$ and $T_n(\theta_k) = (-1)^{n-k}$, $k = 0, \ldots, n$. Suppose that $f \in \Omega_n$ and f'(x) has m - 1 distinct zeros x_1, \ldots, x_{m-1} in (-1, 1). Evidently, there is an $i \in \{0, \ldots, m-1\}$ such that $x_i < 0 < x_{i+1}$. Consider the partition of [-1, 1] into subintervals $[x_0, x_1], \ldots, [x_i, 0], [0, x_{i+1}], \ldots, [x_{m-1}, x_m]$ which we denote, for simplicity, by I_0, \ldots, I_m , respectively. Define the points t_1 and t_2 by the conditions

$$t_1 \in [\theta_i, \theta_{i+1}], \qquad MT_n(t_1) = f(0),$$

$$t_2 \in [\theta_{i+n-m}, \theta_{i+n-m+1}], \qquad MT_n(t_2) = f(0).$$

Denote the intervals $[\theta_0, \theta_1], \ldots, [\theta_i, t_1], [t_2, \theta_{i+n-m+1}], \ldots, [\theta_{n-1}, \theta_n]$ by I_0^*, \ldots, I_m^* . We shall refer to I_k^* as the corresponding interval to I_k .

LEMMA 2. Suppose that f is a polynomial from the set Ω_n with m+1 extremal points, $\alpha \in (-M, M)$ and $k \in \{0, \ldots, m\}$. Let the points ξ and η satisfy the conditions

$$\xi \in I_k^*$$
, $MT_n(\xi) = \alpha$, $\eta \in I_k$, $f(\eta) = \alpha$.

Then $|f'(\eta)| \leq M|T'_n(\xi)|$.

The assertion follows easily from a known extremal property of $\cos nt$. The proof is given with details in [1].

We are now prepared to prove the main theorem.

THEOREM 1. Let n be an arbitrary natural number. Then, for each M > 0, the quantity

$$\sup\{l(f): f \in \pi_n, ||f|| \leq M\}$$

is attained if and only if $f = \pm MT_n$.

PROOF. Note first that the inequality $|d| \le |c|$ implies

(7)
$$(1+c^2)^{1/2} \le (1+d^2)^{1/2} + |c| - |d|.$$

We shall make use of this in the sequel. Suppose that $f \in \Omega_n$ and $[-1, 1] = I_0 \cup \cdots \cup I_m$ is the partition of [-1, 1] induced by f. Let the intervals $I = [z_1, z_2]$ and $I^* = [z_1^*, z_2^*]$ be corresponding. Denote by u(y) and v(y) the inverse functions of f(x) and $MT_n(x)$ in I and I^* , respectively. According to Lemma 2, we have $|v'(y)| \le |u'(y)|$ for each $y \in (-M, M)$. Then, applying (7), we get

$$\int_{-M}^{M} \left[1 + u'^{2}(y)\right]^{1/2} dy \le \int_{-M}^{M} \left[1 + v'^{2}(y)\right]^{1/2} dy + \int_{-M}^{M} |u'(y)| dy - \int_{-M}^{M} |v'(y)| dy.$$

Denote by l(g; K) the arc-length of g over the set K. Then the above inequality means that $l(f; I) \le l(MT_n; I^*) + |z_2 - z_1| - |z_2^* - z_1^*|$. Summing for $I = I_0, \ldots, I_m$, we obtain

$$l(f) \leq l(MT_n; [-1, t_1] \cup [t_2, 1]) + t_2 - t_1 \leq l(MT_n).$$

The equality holds if and only if $t_1 = t_2$, i.e., iff $f = \pm MT_n$. The theorem is proved.

4. Acknowledgments. The author is grateful to his colleagues K. Ivanov, S. Dodunekov, M. Petkov and V. Todorov for discussions and comments.

REFERENCES

- 1. B. D. Bojanov, An extension of the Markov inequality, J. Approx. Theory (submitted).
- 2. P. Erdös, An extremum-problem concerning trigonometric polynomials, Acta Sci. Math. Szeged 9 (1939), 113-115.
 - 3. T. J. Rivlin, The Chebyshev polynomials, Wiley, New York, 1974.
- 4. J. Szabados, On some extremum problems for polynomials, Proc. Conf. Approximation and Function Spaces (Gdansk 1979), PWN, Warsaw (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOFIA, 1126 SOFIA, BULGARIA