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PROOF OF A CONJECTURE OF ERDÖS

ABOUT THE LONGEST POLYNOMIAL

B. D. BOJANOV

Abstract. In 1939 P. Erdös conjectured that the Chebyshev polynomial T„(x) has

a maximal arc-length in [-1, 1] among the polynomials of degree n which are

bounded by 1 in [-1, 1]. We prove this conjecture for every natural n.

1. Introduction. P. Erdös proved in [2] that the function cos nt has a maximal

arc-length in [-m, m] among all trigonometric polynomials of order « with a

uniform norm equal to 1. He has conjectured that the Chebyshev polynomial

Tn(x) = cos(« arc cos x),       -1 < x < 1,

is the unique extremal function in the corresponding analogous problem in the set

mn of algebraic polynomials of degree less than or equal to «.

Denote by 1(f) the arc-length of the function/in [-1, 1], i.e.,

/(/):= /j[l+/'2(x)2],/2¿x.

Set||/||=max{|/(x)|:-l <x < 1}.

Conjecture of Erdös. The quantity

sup{/(/):/G^,||/||< 1}       (« = 1,2,...)

is attained if and only if / = ±Tn.

This conjecture has remained an open problem for over 40 years. In a recent

work Szabados [4] showed that the polynomials Tn are asymptotically extremal as

« —» oo. We prove here the conjecture of Erdös for each natural number «. Our

proof is based on a variational approach.

2. Explanatory statement. The problem of Erdös is set for the domain [-1, 1] X

[-1, 1], i.e., for the class of polynomials/ E mn such that |/(x)| < 1 if |x| < 1. One

may guess that the solution fix) in this particular case suffices to construct the

solution f(M; x) of the corresponding problem about the longest polynomial in the

domain [-1, 1] X [-M, M] for every M > 0. One even suggests the following

simple formula:

(*) f(M; x) = Mfix).
It turns out (see Theorem 1) that (*) is actually true. But this is not evident. The

problem (*) is as difficult as that of Erdös. In any case, the relatioin (*) yields

easily the conjecture of Erdös. Indeed, suppose that (*) holds for every M > 0.
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Then

J_
M.

:/_'[! + M2g'2(x)],/2 dx < ¿£[1 + M2/'2«]1^

for each M > 0, provided g E mn, and || g|| < 1. If we let M tend to infinity, we get

/Il |g'(*)l ¿* < /ii l/'OOl dx. Thus,/should have a maximal variation in [-1, 1].

Therefore/ = ±Tn.

Finally, note that the problem on an arbitrary interval [a, b] is easily reduced to

the problem on [-1, 1] by a linear transformation.

3. Main result. In what is to follow, let M be a fixed positive number. With every

natural number n we associate the set ß„ c mn which is defined as follows. The

polynomial / E mn belongs to ñ„ if there exist m + 1 points {x,}™ (m E

(1, . . . , «}) such that

-1 = x0 <x, < • • • <xm_, <xm = 1,

|/(x,)| = M,        i = 0, . . . , m,

/(*,) = -/(•*,+1),       i = 0, . . . , m - 1

and fix) is a monotone function in [x„ xi+,], / = 0, . . . , m — 1. It is clear that

||/||«Mif/eQ„.
The basic idea of our proof is presented in the following lemma.

Lemma 1. Suppose that f E m„, ||/|| = M and

1(f) = sup{l(g): g E mn, \\g\\ <M}.

Thenf £Q„.

Proof. Without loss of generality we assume that fix) > 0 for each sufficiently

large x > 0. Denote by {x,}™-1 the distinct zeros of f'(x) in (-1, 1). Obviously

m < «. Set, for convenience, x0 = -1, xm = 1, to(x) = f'(x). We shall show that

(1) /(x,) = (-îr-'M,        i = 0,...,m.

This implies that/ E ß„.

Introduce the polynomials

g,(x) = (x2 - l)w(x)/ (x - x,),       i = 0, . . . , m.

We intend to estimate the arc-length a,(e) := /(/ + eg,) for small e. Our first task is

to show that

(2) «¡(0) > 0

for / = 0, . . ., m. It is seen that

•i w(x)
o;(o)=r—^—-g;(x)dx.

J-i[l +to2(x)]1/2

ghtforward calculation gives

o'0(0)=2[l +«2(-l)]1/2- f'[l +<o2(x)]-1/2¿x>0.

In the case / = 0 a straightforward calculation gives
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Similarly, a¿,(0) > 0. Now suppose that 1 < í < m — 1. Integrating by parts, we get

a;(0)=/_!^{t1+a52(x)r1/2}'Ä-

The integrand is a continuous function in [-1, 1]. Therefore o,'(0) < oo and ct/(0) =

lim{%(8): 5^0} where

2- 1

-'OYÄ-1    X     —     X;     "■   L J '•'n(ô)

STand ß(5) := [-1, x, - 5] u [x, + 5, 1]. Next we calculate %(8). Observe first that

t^Xj ± 8) = 0(8). This yields, for instance, by Taylor's formula, that

(3) [ 1 + co2(x,. ± 5)]"1/2 = 1 + 0(82).

Further, by the mean-value theorem for integrals, there exist points £, = £,(S) E

[-1, x,. - 8] and |2 = |2(5) E [x, + 5, 1] such that

f~*[l + «2(x)]-1/2(x - x,)-2dx = cx(8)[l/8 - 1/(1 + x,)],
»-1

('    [1 + co2(x)]-,/2(x - x,)"2 dx = c2(S)[ 1/fi - 1/(1 - x,)]

where c/ô) = [1 + a%)Yl/2,j = 1, 2. Obviously

(5) 0<c,(S)<l,       7=1,2.

Let us set, for convenience, A(8) = /^[l + w2(x)]"l/2 dx. Now, taking into

account the relations (3) and (4), after integration by parts, we obtain

%(S) =[(x2 - 1)/ (x - x,)][l + W2(x)]-,/2|^

- f     [1 + <o2(x)]-1/2{l + (1 - x,2)/(x - x,.)2} dx

M«)
= 8-x[cx(8) + c2(8) - 2](x2 - 1) + O(S) - A(8)

-cx(8)(Xi - I) + c2(8)(Xl + 1).

But, as we have already mentioned, %(8) has a limit as 8 -» 0. Then cx(8) + c2(8)

must tend to 2, which combined with (5) implies c^S)-» 1, j = 1,2, as 5-»0.

Moreover, c^S) = 1 — çuô + o(8),j = 1, 2, with some constants a, > 0. Therefore

a;(0) = tim{9X*): 5^0} = -/1(0) + 2 - (a, + a2)(x2 - l) > 0.

Our claim (2) is proved.

Now, let us assume that/does not belong to ñ„. Then there exists at least one

point x, E {xq, . . . , xm} such that |/(x,)| < M. Consider the polynomial

<Pe(x) ■= A*) + *&(x). Evidently, /(>,) = a,(e) = a,(0) + «#/.) = 1(f) + eofo)

where 0 < te < e. But, according to (2), there eixsts an e0 > 0 such that

o := min{a,'(í): 0 < / < e0} > 0. Therefore

(6) l(<pe) > 1(f) + oe

for each e E [0, e0].
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Let us estimate the uniform norm of <pe in [-1, 1] for small e. In order to do this,

it suffices to investigate the function <pe(x) near the points {xj} for which |/(xy)| =

M. Let xk be such a point. Without loss of generality we may assume that

f(xk) = M. Suppose that « is chosen to satisfy the requirement x, £ [xk — h, xk +

h] n [-1, 1] =: B(xk; h) for every j =£ k. Let <pe(x) attain its maximal value in the

neighbourhood B(xk; h) of xk at the point zk(e). On expanding <pe(x) in a partial

Taylor series around x = xk, we get

9c(zk(e)) < M + e\\g¡\\ \zk(e) - Xk\

for sufficiently small e > 0. It is not difficult to see that \zk(e) — xk\ —» 0 as e —» 0.

Then, in view of the last inequality, ||<pe|| < M + e5(e), where 0(e) is a function

which tends to zero as e -» 0. Now construct the polynomial

Clearly, ^£ e mn and ||»y < M. We shall show that /(&) > 1(f) for small e > 0.

Indeed, since L := 37(A/)/3a|a_, > 0, we have /(<//£) > l(<pe) - (2L/M)e8(e) for

small e > 0. Next we apply (6) and get

**) > Kf) +[*- (2L/M)8(e)]e > 1(f)

for sufficiently small e > 0. Thus, / is not extremal, a contradiction. Therefore

|/(x,)| = M for i = 0, . . ., m. Since {x,}7_1 are all distinct zeros of f'(x) in

(-1, 1), we conclude that (1) is valid. The lemma is proved.

It remains to show that the extremal polynomial / must have « + 1 points of

alternation. For this, we give below an interesting property of the Chebyshev

polynomial Tn(x).

Let {9k}o be the extremal points of ^(x) in [-1, 1]. It is well known (see Rivlin

[3]) that 9q = -1, 9n = 1 and Tn(9k) = (-l)"~k, k = 0, . . ., «. Suppose that/ E ñ„

and/'(x) has m — I distinct zeros x„ . . . , xm_, in (-1, 1). Evidently, there is an

i E (0, . . . , m — 1} such that x, < 0 < xI+1. Consider the partition of [-1, 1] into

subintervals [x0, x,], . . . , [x,, 0], [0, x(+1], . . ., [xm_„ xm] which we denote, for

simplicity, by Iq, . . . , Im, respectively. Define the points tx and t2 by the conditions

í,.6{^#/+1],       MTn(tx) = /(0),

h e[Ö,+n_m, 9¡+n_m+x],       MTn(t2) = /(O).

Denote the intervals [90, 9X], . . . , [0„ tx], [t2, 9i+n_m+x],..., [0„_„ 9n] by

Iq, . . . , I*. We shall refer to /* as the corresponding interval to Ik.

Lemma 2. Suppose that f is a polynomial from the set fi„ with m + 1 extremal

points, a E (-M, M) and k E {0, . . ., m). Let the points £ and n satisfy the

conditions

|G4*,    MTn(0 = a,        7, E 4,   f(n) = a.

Then\f'(r,)\<M\T^)\.

The assertion follows easily from a known extremal property of cos nt. The proof

is given with details in [1].
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We are now prepared to prove the main theorem.

Theorem 1. Let « be an arbitrary natural number. Then, for each M > 0, the

quantity

sup{l(f):fEm„, 11/11 <M]

is attained if and only iff = ±MTn.

Proof. Note first that the inequality \d\ < |c| implies

(7) (1 + c2)I/2 < (1 + d2)ï/2 + \c\ - |4

We shall make use of this in the sequel. Suppose that /£!]„ and [-1, 1] = I0

U • • • U 4, is the partition of [-1, 1] induced by/. Let the intervals / = [z„ zj

and /* = [zf, z£] be corresponding. Denote by u(y) and v(y) the inverse functions

of fix) and MT„(x) in / and /*, respectively. According to Lemma 2, we have

\v'(y)\ < |h'O0| for each v E (-M, M). Then, applying (7), we get

fM[l + u'2(y)]l/2dy < ["[I + v'2(y)]l/2dy + [M\u'(y)\dy - ¡M\v'(y)\dy.
J-Ml J J-M J-M J-M

Denote by l(g; K) the arc-length of g over the set K. Then the above inequality

means that /(/; /) < l(MT„; I*) + \z2 - z,| - \z$ - zf|. Summing for / =

Iq, . . . , Im, we obtain

/(/) < l(MT„; [-1, /,] u[i2, 1]) + t2 - tx < l(MTn).

The equality holds if and only if /, = t2, i.e., iff /= ±MTn. The theorem is

proved.

4. Acknowledgments. The author is grateful to his colleagues K. Ivanov, S.

Dodunekov, M. Petkov and V. Todorov for discussions and comments.

References

1. B. D. Bojanov, An extension of the Markov inequality, J. Approx. Theory (submitted).

2. P. Erdös, An extremum-problem concerning trigonometric polynomials, Acta Sei. Math. Szeged 9

(1939), 113-115.
3. T. J. Rivlin, The Chebyshev polynomials, Wiley, New York, 1974.

4. J. Szabados, On some extremum problems for polynomials, Proc. Conf. Approximation and Function

Spaces (Gdansk 1979), PWN, Warsaw (to appear).

Department of Mathematics, University of Sofia, 1126 Sofia, Bulgaria


