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CARDINAL ARITHMETIC AND N,-BOREL SETS

JURIS STEPRÄNS

Abstract. It is shown to be consistent with 2K° > N, that the smallest K2-complete

Boolean subalgebra of ?P(R) containing all closed sets is ^(R). Some related results

are also proved.

Introduction. The object of study of this paper is the set of N,-Borel sets. The

reader has no doubt already guessed the definition of an N,-Borel set but if not he

should consult §1. One objection which might be raised to such a study is that the

concept of an X^Borel set is not nearly as natural as the concept of a Borel set.

However certain classical results of descriptive set theory show that this is not

entirely true. Sierpinski has shown that every S2-set is N,-Borel and in fact is the

union of N,-many Borel sets [7]. Hausdorff has also established a relationship

between Borel sets and the cardinal N, by showing that the real line can be

partitioned into N,-many Borel sets [3]. Another argument in favour of the

naturalness of N,-Borel sets is that it is at least consistent that they be very well

behaved. Under MA & 2"° > X, they are Lebesgue measurable and have the

property of Baire [5].

The N,-Borel sets, however, are not well behaved absolutely and so the study of

them is not merely an exercise in rephrasing all the known theorems about Borel

sets. If 2K° = Hx, for example, then all sets of reals are N¡-Borel and hence nothing

specific can be said about them. Also note that the fact that the reals are second

countable is very useful in the study of Borel sets, but in the study of N,-Borel sets

it must play a much smaller role.

The main result of this paper is that 2*° = Hx is not equivalent to the statement

that every set of reals is N,-Borel. This answers a question of Galvin, Prikry and

Wolfsdorf [6]. This result is found in §2. §1 contains definitions and terminology

while §3 contains some results on when non-X,-Borel sets exist.

1. Definitions and terminology. Lower case Greek letters will denote ordinals. The

letter k will be reserved for cardinals. If A' is a set ^(X) is the power set of X. Also

[XY = {y CX: | Y\ = k}, [X]<k = {Y QX: \Y\ < k] and [X]<K = {Y <Z X:

\Y\ < /c}. If P is a partial order and 1 H-p "Q is a partial order" then P * Q denotes

the iteration of P followed by Q.

Define by induction on the ordinals £ G w2 sets 2"', n"1 as follows:

(1) 25> = ITS' = {X ç R: X is Borel};

-
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(2) for £ * 0, 2J' = { U &: & G [U {!%>: ij G £}]<"'};
(3) for £ gfe 0, II? = {R \ *: X G 2£'}.

Clearly for a G ¿S G co2, 2J ç 2£, 2¡J' Q Il«B\ U^ G 2j}' and UHa' ç n£. Hence it

is possible to define B(XX) = U {n*1: £ G co2} = U {2"': £ G co2}. The elements

of B(tix) are known as N.-Borel sets.

2. Con(2K° > N, & B(RX) = ^(R)). As its title suggests the main goal of this

section is to prove that the continuum hypothesis is not equivalent to the equality

B(HX) = ?P(R). In fact it will be shown to be consistent with the negation of the

continuum hypothesis that 2J?1 = 9 (R). Before proving this let us note that this is

the best result possible.

Scholium 1. 2"° = N, ij equivalent to 2"1 u n*1 = <3'(R).

Proof. One direction is trivial. For the other assume that 2"° > N,. Using the

fact that |25'| = 2*° and that if A' G 2„> and \X\ > H0 then \X\ = 2\ it is possible

to inductively construct ^ CR such that for each uncountable X G 2{J', \A n X\

= |((R \ A) n X)\ = 2"°. Since 2"° > N, it follows that neither A nor R \ A belongs

to 27' and hence A G <3>(R) \ (2J1 U IT?').
Definition 2. For any A C R define a partial order BC(A) = (BC(A), < ) as

follows: (/, g) G BC(A) if and only if

(1)/: n X n -» [[Q]2]<K° where n G co and Q is the set of rationals,

(2)g:u>->[A]<"°,

(3)|{nGco:g(n)^0}|<N0,

(4) (Vn G co) (V(n, m) G domain(/)) (Vj G g(«)) (3{p, q) G/((n, »))) (p < s

< q), let (/, g) < (/', g') if and only if:

(5)/ 2 /',
(6) (Vn G co) (g(n) D g'(«)).

Lemma 3.  For any ^CR, BC(^) is a-centred.

Proof. (Vn G to) (V/: n X n->[ß]2) ({(«,g) G BC(A): h = f) is centred in

BC(A)).

If G is BC(/l)-generic over F then let

G*= U {/:(3g:co^[^]<Ko)((/,g)GG)}.

Standard arguments show that G* is a function from co X co to [[(2]2]<H°- From G*

it is possible to define a set of reals

<G*> = U {H {{s&R:(3{p,q} G G*((n, m))) (p <s < q)}: m G co}n G to}.

Note that the set of reals <G*> will vary from model to model.

Lemma 4. // G is EC(A)-generic over V then <G*> n V = A. Furthermore this

equality holds in any extension M D F[G].

Proof. Let s e. A. Then of course j G V since A El V and Kis transitive. To see

that s G <G*> note that {(/, g) G BC(A): (3n G to) (s G g(n))} is dense in BC(A).
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Furthermore note that if (/, g) G G and s G g(n) then (V(/', g') G G) (V(n, m) G

domain(/')) (3{p, ?} G f'((n, m)) (p <s < q)). Conversely, if s G V nR\A then

{(f, g) e BC(A):

(3m G co) (V{p, q) G/((n, m))) (s < min{p, ?} ors > max{p, q)))

is dense in BC(A) for each n G co. Hence s $. {G*}.

The last remark is clear from the absoluteness of Borel predicates [4].

Definition 5. Let BC = U{BC(A): A GR} and

wBC = n{BCG4M G[R]<2"°}

where the product in both cases is the Tychonoff product. It follows from Lemma 3

that both BC and wBC satisfy the countable chain condition (see [4, p. 243]).

Now define by induction on ordinals £ Q ux partial orders Pf and wPf as

follows:

(1) P0 = BC and wP0 = wBC;

(2) for £ a limit ordinal, Pf is the direct limit of {P,,: 17 G £} and wP¿ is the direct

limit of {wP,,:i7 G£};

(3) p{+i = P£ * BC and wPi+, = wP¿ * wBC.

Obviously both Pu and wPu satisfy the countable chain condition. As usual if

£ G 7) then P,, is isomorphic to a dense subset of P4 * P*'1 where P*'71 is a name for

the t/ \ £-tail of the iteration as defined over an extension which is generic for P4.

Also, if G is generic for P , then G = G( * Gir> where Gf is P^generic over V

and Giv is P^-generic over K[Gf]. Similar remarks hold for wP,, as well. For

details see [1].

Lemma 6.

(a) If G is Pa-generic over V, £ G co, and F[G£]N"^ C R" then V[G]£"A G

(b) // G is Y/Pu¡-generic over V,   £ G co, and V[G(] \="A G [R]<2"°" then V[G] 1=

"A G n?>".

Proof. Since the proofs of (a) and (b) are almost identical only (a) will be

proved. First note that if £ ç tj G to, then A G V[GV\ and hence F[Gi+]] =

V[G1I}[G™+X]= V[GV][H')[HV] where f/„ X H' = G™+x and Hv is BC(^i)-

generic over FfGJ. Of course if £ ç tj G co, then <//*> G 2J'. It therefore suffices

to show that p| {<//*>: £ Ç 17 Gco,} = A where {H*) is interpreted in V[G].

By Lemma 4 it is clear that A Q C] {<#*>: £ Ç tj G to,}. Let V[G] ¥*s G

R \ A" then by the countable chain condition s G K[Gn] for some tj G co, \ £. But

then by Lemma 4 {H*} n V[GV] = A and hence j G <#*>•

Lemma 7.

(a) 7/G is Pa -generic over V and A ÇRfi V[Gç] for some £ G co, and A G V[G]

then V[G] V"A '= U {Ae: £ Ç f G co,}" where A^ G V[Ge]for £ Ç f G co,.

(b) // G is wPUi-generic ewer F where V t"2*° = 22"0" and A ç R n F[G£] /or

jome £ G co, W V[G] f"í4 G [R]<2"°" inen V[G] V"A = U {¿f : I Ç f G to,}"

wnere F[Gf] t="^r G [R]<2"°"/<w £ Q f G co,.



124 JURIS STEPRANS

Proof. Only (b) will be proved since the proof of (a) is similar and even easier. It

is easy to see that if W ^"2"° = 22"0" then |wBC| = 2K» and hence if H is wBC over

Wthen W[H] ="2"° = Q*>)w = (22"°)w = 22"0". Hence V[G] ="2"» = (2*«)y".

Now let V[G] = nG{][Gf-"'] and choose & G V[G(] a Piw'-name for A. We

may assume that 6E is nice (i.e. & = U {{s} X ^(i): i 6 R n ^[^f]} where each

A(s) is an antichain). Define, in F[G£],

&s= U {{s } X A(s): s G R and A(s) Q p«}

for £ ç f G co,. Let A¡ be the interpretation in V[G] of &¡. Then A¡ Q A and

hence \AS\ < 2"». But At G F[G£][G"] = K[Gf] and, since (2"»)^G^ = (2K°)KIG1,

F[Gf]N"^ G[R]<2"°". To see that V\G\Y"A = U {¿f: tCt Gco,}", use the

countable chain condition.

Lemma 8.

(a) If G is Pa-generic over V and A G V[G] then A = U {A^. £ G co,} where

(V£ G co,) (3t, g'co.) (¿{ G V[GV]).

(b) 7/ G ii yiPu-generic over V and V N"2"» = 22"0" an<f y4 G F[G] then A =

U {^4£: £ G co,} where

(V£ G co,) (3n G co,) ( V[ G„] N"^l£ G [R]<2,<0").

Proof. Use the countable chain condition and Lemma 7.

Theorem 9.

(a) Con(ZF) => Con(ZFC & 2K» > N, & 2$' = 9(H))

(b) // cf((c) > co /nc?n Con(ZF) ^> Con(ZFC & 2"» = k & 2^' D [R]<2"°).

Proof. Use Lemma 6 and Lemma 8.

Scholium 10. In the model for Theorem 9 (a), 2*° = (la)y.

Proof. It is easy to prove by induction that if G is Pu .-generic over V and

£ G co„ F[G£] 1= 2K° > (2()y and since |PUJ = 2a¡, the result follows.

A natural question which arises is whether or not it is possible to have cf(2K°) >

co, and B(HX) = <S'(R). In the next section we will indicate at least one difficulty

which must be overcome if a model of cf(2K°) > co, and B(HX) = 1?(R) is to be

obtained. Also, since 2"° = N, => B(HX) = ?P(R) and Theorem 9(a) shows that

B(tix) = <iP(R) is consistent with cf(2"°) = co, < 2"°, it might be conjectured that

cf^"») = co, => B(XX) = <éP(R). In the next section it will be shown that this is not

the case.

Finally we remark that J. Baumgartner has constructed a different model for the

proof of Theorem 9(a). He starts with a model of GCH and constructs an iteration

of length co, such that at each successor stage £ + 1, a model of MA & 2*° = N£+,

is obtained. The fact that under MA every set of reals of size < 2K° is a ß-set [8] is

used to show that 2J?' = ^(R). In fact even more is true: Every set of reals is of the

form U { fï { U {At,T,,r' t G co,}: tj G co,}: f G co,}, where the sets Air¡¿ are not

only Borel but in fact closed. The referee has pointed out that the same model is

used in [2] to obtain results on the 77-character of ßN.
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3. Models with non-N,-Borel sets. We begin this section by recalling the following

classical theorem of Hausdorff. Every uncountable Borel set has cardinality 2"°

([4, p. 507]). The analogue of this statement for N,-Borel sets is: Every N,-Borel set

of cardinality greater than N, has cardinality 2K°. The results of the previous section

show that this statement is not a theorem of ZFC. However it is easy to construct

models where 2"° is arbitrarily large and this statement does hold.

Recall that ordinary Borel sets can be coded by functions c: co—»co [4]. By

similar arguments it can be shown that N,-Borel sets can be coded by functions c:

co, -» co,. If c G V and V f"c: co, -» u" then the N, -Borel set coded by c in V will

be denoted by c( V). It is easy to verify that if V and V are transitive models of

ZFC and co,K = «/" and {c, r] Q V n V, where r G R and c G "'co„ then V f'V

G c(V)" if and only if V N"r G c(V')". This fact will be used in the results below.

However, the reader is cautioned against concluding that all of the absoluteness

results which hold for ordinary Borel sets also hold for X,-Borel sets. The following

observation illustrates this phenomenon.

Scholium 11. There is a generic extension of V, V[G], and an X,-Borel code

c G w'co, n V such that V N"c(F) = 0" but V[G] f"c(F[G]) * 0". Recall that this

is impossible for Borel codes.

Proof. The result will be shown for 2" rather than R. Let {a£: £Gco,} u {b(:

£ G co,} Ç 2" be a Hausdorff gap. Then, as in [3], define FoS's {A¿: £ G co,} such

that / G Aç if and only if a£ < / < Z>£ (mod finite). Let c G u,co, be a code for

D {A^: £ G co,}. Clearly V f"c(F) = 0". Now let V[G] be the generic extension

obtained by collapsing co,. Then V[G] \="c(V[G]) ¥= 0".

Theorem 12. If V f"2*° = X," & P is the product of k many Cohen partial orders

then in any generic extension by P every set of reals of size greater than K, has size

2\

Proof. Let P = n{C£: £ G k} where each C£ is countable and let G be

P-generic. For Y C k let Gr be generic over n{C£: £ G T} in such a way that for

each T, Gr X GkXT = G.

Now suppose that in V[G], A Q R is X,-Borel. Let c: co, ̂ >co, be an X,-Borel

code for A. Choose T G [«]"' such that c G V[Gr].

If A G V[GT] then \A\ < N,. Otherwise choose s e A\ V[GT]. Then there is a

countable AÇk such that s G F[Gr][GA]. Since n{C£: £ G A} is isomorphic to

the Cohen partial order C, we have for somep G C

K[Gr]F>F"c(F[Gr][Jr/])\c(F[Gr])^0""

where H is a name for the generic set. But clearly |{£ G k\T: p G G{£}}| = k and

so |c(F[G])| = k.

Corollary 13.

22"0 = 2"' does not imply £(N,) = <3>(R).

(Note that £(N,) = 9>(R) does imply 22"0 = 2"'.)
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Corollary 14.

cf(2*°) = co, does not imply B(HX) = <3>(R).

Let us now consider the problem posed in the last section: Is it possible to have

cf(2K°) > co, & B(HX) = <iP(R) simultaneously? The next result shows that none of

the standard ways of adding generic reals will provide a positive answer to this

question.

Scholium 15. Suppose that {V(: £ G k} is an increasing sequence of models of

ZFC such that

(l)(V£GT,GK)(Rn(Fn\F£)^0),

(2) "'«,-£ U {K£,£GK}.
Then B(XX) ¥= <3>(R).

Proof. First choose for £ G k, aí G R n (K£+, \ F£). Choose a canonical bijec-

tion <J>: R -» ^(Q). Let X = {a( + s: £ G k & s G 3>(a£+,)}. To see that X is not

X,-Borel suppose c: co, —»co, is an X,-Borel code for X. By (2) choose £ G x such

that c G Vi+X. Then c(Vi+x) n (<z£ + Q) G K£+1. But clearly {a£ + Q: £ G k} is

pairwise disjoint. Hence c(V(+x) n (a£ + Q) = X n (a( + Q) = {a( + s: j G

0(a£+,)}. But then a£+1 G Vi+X.
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