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THE COHESIVE PROPERTY

GERALD JUNGCK

Abstract. We introduce the concept of cohesive families of neighborhood bases.

We thereby obtain conditions necessary and sufficient to ensure that a separable

space be second countable, and sufficiency conditions for complete collectionwise

normality. As by-products we obtain metrizability criteria. We prove, e.g., that a Tx

space is metrizable iff it has a refined development {Gn: n G N} such that {Bp:

p G X] with B  = {St(/>, G„): n e Af} is cohesive.

1. Preliminaries. A basic result in topology states that any second countable

space is separable, whereas the converse is false. The question as to precisely what

property must be added to separability to produce second countability appears to

remain unanswered. We provide an answer via the concept of "cohesive" families,

a concept we define shortly. We then further apply this cohesive property to obtain

criteria for collectionwise normality and metrizability, and a characterization of

metrizability in terms of uniformly continuous semimetrics. First, however, we

comment on terminology and notation.

If p is a point in a topological space (X, T), a neighborhood of p is a set V(p)

such that p G 0 c V(p) c X for some 0 G T. We refer to a neighborhood basis Bp

atp as a "local base atp" if Bp c T. And Bp is "monotone" if B is linearly ordered

by set inclusion, with the usual requirement that Vn+X(p) c Vn(p) fornGN when

Bp is countable (N denotes the set of positive integers). A Tx space (X, T) is a

semimetric space iff there is a function d on X X X into the nonnegative reals

(called a semimetric) such that d(x, v) = d(y, x), d(x, y) = 0 iff x = y, and d is

compatible with the topology T (i.e., if M c X, x G M iff inf{d(x, y): y G M} =

0). We let S(x, r) denote the set {y G A': d(x, y) < r}. And (X, T) is developable

iff there is a sequence G = {G„: n G N) of open covers of X such that (St(x, G„):

n G N) is a local base at x for each x G X. G is called a development for X.

2. The cohesive concept and applications. Let (X, T) he a space and let B be any

basis for T. If Bp = (0 G B: p G 0}, then the family [Bp: p G X) is a "cohesive"

family.

Definition 2.1. Let (A', T) he a topological space, and for eachp G X let Bp he

a neighborhood basis atp. The family {Bx: x G X) is cohesive at p G X iff the

following obtains.

(*) If 0 G F andp G 0, there exists V G Bp such that x G F implies thatp G U

and U c 0 for at least one U G Bx.
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We say that the family is cohesive iff it is cohesive at each point of X.

As noted above, any space has cohesive families of neighborhood bases. We can

sometimes be selective.

Example 2.2. If (X, d) is a metric space and Bp = {S(p, \/n): n G N), then

{Bp:p G X) is a cohesive family in which each Bp is monotone and countable.

Of course, very nice spaces may have monotone countable local bases which

generate noncohesive families.

Example 2.3. Let X = R, the reals with the usual topology, and Z the set of

integers. If x G (i, i + 1) for some i G Z, let Bx = {(x — \/n, x + \/ri) n (i, i +

1): n G N), and for x G Z let Bx = {(x - l/n, x + \/n): n G N). Then each Bx

is a local base and the family { Bx : x G X } is cohesive on X — Z but at no point of

Z.

The next example motivates our first result.

Example 2.4. If X = R and T is the lower limit topology generated by the

half-open intervals [a, b), then (X, T) is first countable and separable (and para-

compact, [6, p. 175]), but not second countable. The following theorem tells us that

if Bp is a countable local base for eachp, then the family {Bp: p G X) cannot be

cohesive.

Theorem 2.5. A topological space (X, T) is second countable if and only if it is

separable and has a countable local base Bp at each p G X such that the family [Bp:

p G X] is cohesive.

Proof. (Necessity.) Since any second countable space is separable, we need only

prove the cohesive property. So let B he a countable base for T. For p G X let

Bp = {V: V G B and p G V). Clearly, B is a countable local base. To see that

{Bp: p G X] is cohesive, let p G 0 G T. Since B is a basis for T, there exists

V G B such that p G V and V c 0. Now V G Bp by definition of Bp. But since

V G Bx for any x G V, condition (*) in the definition of cohesive families is

trivially satisfied with U = V.

(Sufficiency.) Let [B : p G X) he a cohesive family assured by the hypothesis,

and let D he a countable dense subset of X. Define B = U {Bp: p G D). Clearly,

B is countable. We assert that B is a basis for T. First note that B c T. Now let

0 G F and p G 0. Let V G B which satisfies property (*) with respect to the given

0 and p. Since D is dense and V is open, there exists x G D n V. By (*)

p G U c 0 for some U G Bx. But U G Bx and x G D imply that U G B, and the

theorem is proved.

We next consider the cohesive concept in the context of monotone neighborhood

bases Bp, with the reminder that a Tx space is collectionwise normal iff every

discrete collection of sets can be covered by a pairwise disjoint collection of open

sets, each of which covers just one of the original sets.

Theorem 2.6. Let (X, T) be a Tx space which has a neighborhood basis Bp at each

p G X such that B = {Bp: p G X] is cohesive. If X has a dense subset D such that

B  is monotone for each p G D, then (X, T) is collectionwise normal.
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Proof. Let F be a discrete collection of subsets of X. For each x G U F we let

Cx denote the unique set in F which contains x. Thus Cx n Cy ¥= 0 iff Cx = C.

Since F is discrete, for each x G U F there exists Vx G Bx such that

(O ^n(UF)cCx,

and since B is cohesive, for each x G U F we can choose Ux G Bx such that (*)

z G Ux implies that x £ V" C Vx for some V' G Bz.

We now let Ox = U {lnt(Up): p G Cx) for all x G U F. Since each p de-

termines a unique set c/,,

(2) Ox = Oy   if Cx = Cy.

Clearly Cx c Ox and each C\ is open. Moreover, Ox n (U F) = Q by (1), since

c/, c Fp. So to prove that X is collectionwise normal, we have yet to show that the

members of {Ox: x G U F} are pairwise disjoint.

To this end, we suppose that Ox n Oy =£ 0 for some x, v and we show that

Ox = Oy. The definition of Ox and Oy yields p G Cx and q G Cy such that

\nt(Up) c Ox, lnt(Uq) c O,, and \nt(Up) n lnt(Uq) ^ 0. Thus there exists z£(/f

D Uq n A since Ö is dense in X Then by (*), z G Up implies there exists VP G Bz

such that p G Vf c Vp, and z G Uq implies there exists  V* G Bz such that

q G K? C K,.
But z G D so that 5Z is monotone, and we may assume w.l.o.g that Vf c K/. By

the above we therefore have p, q G Vp. Since p G Cx and q G Cy, Vp r\ Cx ¥= 0

and Vpc\Cy* 0. But K;n(Uf)cCf (see (1)), so Cp n Cx * 0 and C, n Ç,

7^ 0. Thus Cx = Cp = q,, and (2) implies Ox = Oy.   Q

Since the properties of a neighborhood basis ßp being monotone and the family

{Bp: p G X) being cohesive are clearly hereditary, we can say

Corollary 2.7. A F, space X which has a monotone neighborhood basis Bp at each

point p such that {Bp: p G X} is cohesive is hereditarily collectionwise normal (or

equivalently, completely collectionwise normal).

Corollary 2.7 and a result by McAuley [4] imply

Corollary 2.8. Any semimetric space (X,d) in which the family {Bp: p G X)

with Bp = {S(p, \/n): n G N} is cohesive is completely collectionwise normal and

paracompact.

On the other hand, a well-known example of McAuley (see [5 or 6, p. 175])

demonstrates that a semimetric space may be paracompact and even hereditarily

separable although the neighborhoods S(p, 1/n) do not generate a cohesive family.

That the \/n neighborhoods do not generate a cohesive family follows from

Theorem 2.5 and the fact that McAuley's space is separable but not second

countable. Now McAuley's space is not developable. Another well-known example,

the "tangent disc" toplogy [6, p. 176] is a regular developable space which is not

normal and therefore, by Theorem 2.6, the family {Bp: p G X) with Bp =

{St(p, G„): n G N) is not cohesive (St(p, Gn) = U {0 G G„: p G 0}). However, if

we combine the cohesive property with developability, we obtain metrizability.
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Corollary 2.9. A Tx space X is metrizable iff there is a refined development {G„:

n G N] of X such that {Bp: p G X) with Bp = {St(p, G„): n GN) is cohesive.

Proof. The "necessity" is immediate. To verify " sufficiency" note that since

Gn+X refines Gn, each Bp is monotone, so that A' is collectionwise normal. But as is

well known, any collectionwise normal developable space is metrizable.

3. Metrizability criteria. A theorem in [3] states

Theorem [3]. A F3 space (X, T) is metrizable iff there is a semimetric d compatible

with T such that

(i) lim„ d(xn, y„) = Um„ d(x„,p) = 0 implies lim„ d(y„,p) = 0.

The F3 requirement in the above result is redundant. For suppose that (X, T) is

a F, space and d is a semimetric compatible with F for which (i) above holds. Thus

S(p, l/n) is indeed a neighborhood of p, and it is a simple matter to show that for

any p G X and n G N, there exists k = K(p, n) > n such that p G S(x, l/k) c

S(p, l/n) for all x G S(p, \/k) (remember, x G S(p, \/k) iff p G S(x, \/k)

since d is "symmetric"). Thus if Bp = {S(p, l/n): n G N), then {Bp: p G X] is

cohesive—in a uniform way. Consequently, Theorem 2.6 applies, so that (X, T) is

certainly F3 and we have

Proposition 3.1. A Tx space (X, T) is metrizable iff there is a semimetric d

compatible with T such that

(i) lira, d(xn,p) = lim„ d(x„, yn) = 0 implies lim d(yn,p) = 0.

Now a F, space (X, T) which has a continuous semimetric compatible with T is

developable but need not even be normal [2]. The next result, which we believe

(surprisingly) to be new, tells us what to add to continuity to obtain metrizability.

Theorem 3.2. A Tx space (X, T) is metrizable iff there is a semimetric d

compatible with T which is uniformly continuous.

A semimetric d is continuous at (a, b) iff for any e > 0 there is a 8 > 0 such that

(ii) \d(x, y) — d(a, b)\ < e if max{t/(x, a), d(y, b)) < 8. Of course, d is uniformly

continuous if 38 > 0 such that (ii) holds for any (a, b) and (x, y) in X X X.

Proof (of Theorem 3.2). If (X, T) is metrizable and d is a metric compatible

with T, the triangle inequality yields

\d(x,y) - d(a, b)\ < d(x, a) + d(y, b) < 2 max{d(x, a), d(y, b)}

so that (ii) above is satisfied for any (x, y) and (a, b) and any e if 8 = e/2; thus d is

uniformly continuous.

Conversely, suppose that d is uniformly continuous and that d(xn,p)—>0

and d(xn, yn) -^ 0, and let e > 0. By uniform continuity 38 > 0 such that

d(p, y„) = \d(yn,p) - d(x„, x„)\ < e if (iii) max{d(yn, x„), d(p, x„)} < 8. Since

d(xn, yn)—>0 and d(xn,p)—>0, there exists k such that (iii) holds for n > k; i.e.,

d(yn, p) < e if n > k. Thus lim d(yn, p) = 0, and (A', T) is metrizable by Proposi-

tion 3.1.   □
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(For a study of continuity and uniform continuity in the context of generalized

metric spaces see [1].)

In the comments preceding Proposition 3.1 we observed that the requirement (i)

induced a local uniform cohesiveness on the l/n neighborhoods, a concept we now

utilize.

Theorem 3.3. A Tx space (X, T) is metrizable iff there is a countable monotone

local base {Vn(p): n G N) at each p G X such that (**) for each n G N, 3k =

k(n, p) > n such that p G Vk(x) c V„(p) far all x G Vk(p).

Proof. The "necessity" follows immediately with Vn(p) = S(p, l/n). To prove

that the condition is sufficient, for each n G N we let Gn = {Vk(nj¿)(x): x G X)

where k = k(n, x) is chosen to satisfy (**). We assert that G = {G„: n G N) is a

development. Clearly, each G„ is an open cover of X, so we have yet to show that

(St(p, G„): n G N] is a local base atp forp G X. To see this, letp G 0 for some

0 G T. Since B is a local base at p, we can choose n such that Vn(p) c 0. We

prove that St(p, Gk(nj>)) c V„(p). Note that

(1) St(p, Gk(nj>)) = U {Vk(k(n,P),x)(x)--P G Vk(k(n¡pU)(x)}.

If p G Vk(k(nj>)xy(x), the definition of k(k(n, p), x) and (**) imply x G

K(k(nj,),x)(P) C Vk(nj))(x). But

(2) k(k(n,p),x)> k(n,p).

Thus by monotonicity x G Vk^np)(p), so the designation of k(n,p) and (**) imply

P S VkM(x) c Vn(p). Thus (2) yields Vk(k(nj>>x)(x) c Vn(p), and by (1) we have

St(p, Gk(nj))) c Vn(p) as desired; i.e., (A', F) is developable. But by Theorem 2.6

(X, T) is also collectionwise normal and therefore metrizable, since any collection-

wise normal developable space is metrizable.    □

In closing we note that since Urysohn's Theorem tells us that any regular second

countable F, space is metrizable, we can apply Theorems 2.5 and 2.6 to conclude

Corollary 3.4. A separable Tx space X is metrizable iff there is a countable

monotone local base Bp at each p G X such that {Bp: p G X} is cohesive.
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