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STRONG LOCAL HOMOGENEITY DOES NOT IMPLY

COUNTABLE DENSE HOMOGENEITY

JAN VAN MILL

Abstract. We give an example of a connected and locally connected subspace of

the plane which is Baire and strongly locally homogeneous (as a consequence, the

example is homogeneous) but which is not countable dense homogeneous.

1. Introduction. All topological spaces under discussion are separable metric.

A space X is called strongly locally homogeneous if it has an open base ^L such

that, for each U G % and points x,y G U, there exists a homeomorphism h:

X -» X with h(x) = y and h\X\U equal to the identity. The most obvious exam-

ples of strongly locally homogeneous spaces are locally euclidean spaces and

zero-dimensional homogeneous spaces. Clearly, every connected strongly locally

homogeneous space is homogeneous.

A space X is called countable dense homogeneous if for any two countable dense

subsets M and N of X there is a homeomorphism / of X onto X such that

f(M) = N. Bennett [2] showed that a connected countable dense homogeneous

space is homogeneous.

The relation between countable dense homogeneity and strong local homogene-

ity is not clear, even in the class of connected spaces. In fact, I do not have an

example of a connected countable dense homogeneous space which is not strongly

locally homogeneous. Bennett [2] showed that every locally compact space which is

strongly locally homogeneous is countable dense homogeneous. This result was

generalized by Anderson, Curtis and van Mill [1] who showed that every topologi-

cally complete space which is strongly locally homogeneous is countable dense

homogeneous. The aim of this paper is to show that the topological completeness

assumption in this result is essential. To this end we construct an example of a

one-dimensional connected and locally connected subspace of the plane which is

strongly locally homogeneous but not countable dense homogeneous. Our example

is even Baire which shows that the above cited result of Anderson, Curtis and van

Mill is, in a sense, best possible. Since our space is homogeneous it has quite a few

homeomorphisms, but since it is not countable dense homogeneous it cannot have

too many homeomorphisms. To achieve this we use a method originally due to

Kuratowski [6] which was later rediscovered by de Groot [5].

2. Preliminaries. A cardinal is an initial ordinal, and an ordinal is the set of

smaller ordinals, c denotes 2H°.
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The following classical result, due to Lavrentieff [7], will be important in our

construction.

2.1. Lemma. Let X and Y be topologically complete. If A G X and B c Y and if h:

A —» B is a homeomorphism, then there are Gs-subsets A' G X and B' c Y such that

A G A' and B c B' while moreover h can be extended to a homeomorphism h':

A'^B'.

The domain and range of a function / will be denoted by dom(/) and range(/),

respectively. Observe that the collection ÍF = {/: dom(f) and range(/) are (^-sub-

sets of R2 and/: dom(f) —» range(/) is a homeomorphism} has cardinality c.

The autohomeomorphism group of R2 will be denoted by Auth(R2). Q denotes

the space of rationals.

3. Construction of the example. Let % = {[a, b] X [c, d]: a, b, c, d G Q, a < b

and c < d}. For all H0, Hx, H G % with H0 u Hx c int H choose a homeomor-

phism h: R2 -> R2 such that

(1) h(HQ) = Hx, and

(2) h\(R2\H) = id.

Let G C Auth(R2) be the set of homeomorphisms obtained in this way. Observe

that G is countable. Therefore, the subgroup <I> of Auth(R2) generated by G is also

countable.

For each x G R2 define

V(x) = {tp(x): <p G $}.

Observe that x G V(x), since id G <¡>, and that for all <p G <¡> we have that

rp( V(x)) = V(x). Also, since 5> is countable, V(x) is countable.

3.1. Lemma. Let A, B g R2 be such that \A\ = c and \B\ < c. Then \{x G A:

V(x) n B = 0}| = c.

Proof. Suppose that |{x G A: V(x) n B =£ 0}| = c. We will derive a contradic-

tion. Since c has uncountable cofinality, i.e. c is not the sum of countably many

smaller cardinals, there is a set A0 c A of cardinality c and a <p G O such that for

all x G A0 we have that <p(x) G B. Since <p is one-to-one and [Z?| < c, this is

impossible.

Therefore \{x G A: V(x) n 5 # 0}| < c from which follows that |{x G A:

V(x) n B = 0}\ = c.   □
Let 3F be as in §2. Put

S = {/ G ?: \{x G dom(f):f(x) € V(x))\ = c}.

Then \§ \ = c (see the proof of Lemma 3.2(a)) and therefore we may list % as {fa:

a < c}. By transfini te induction we will construct for each a < c a point xa G

dom(fa) such that/a(xj £ V(xa) and

(3) (F(*J U {/„(*„)}) n ( U   K^) U {fp(xß))) = 0
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This construction is a triviality. Suppose that the points x^ for ß < a have been

defined. Put A = (x G dom(^): fa(x) G V(x)). By assumption \A\ = c. In addi-

tion, let

B =   U   V(xß) U {ffi(xp)}.

Then \B\ < c since |a| < c and each V(xp) is countable. Therefore, by Lemma 3.1,

the set A0 = {x G A : V(x) n B = 0} has cardinality c. Since A0 c dom(/a) and/a

is one-to-one, it is also true that fa(A0) has cardinality c. Therefore we can find a

point x G A0 withfa(x) G B. Define xa = x. It is clear that xa is as required.

We claim that

x = U   V(xa)

is the example we are looking for.

3.2. Lemma, (a) If K c R2 is uncountable and closed then K n X i= 0-

(b) X is connected and locally connected.

(c) X is one dimensional.

(d) Iff G S then for some x G dom(f) n X we have that fix) G X.

Proof, (a) Without loss of generality, A' is a Cantor set. Let AT' be a Cantor set in

R2 not intersecting \J &<bq>(K) and let h: K^>K' be any homeomorphism.

Clearly, h G § and therefore, by construction X n dom(A) = X n K =£ 0. For

(b), assume that X = U u V, where U and V are disjoint, nonempty and open in

X. Let U' and V he open subsets of R2 with U' n X = U and V n X = V. Since

X is dense in R2, by (a), U' n V = 0 and consequently, AT = R2\(C/' u V)

separates R2. Since K is necessarily uncountable, by (a), K n X ¥= 0. But this is a

contradiction since X c U' u F*. Consequently, A' is connected and the same

proof shows that X is locally connected. Observe that (d) is a direct consequence of

(3). Consequently, (d) implies that X has empty interior. For if X has nonempty

interior then there are Cantor sets K, L c X with L n LLe* <p(AT) = 0 If A:

AT -» L is any homeomorphism then h G § and since range(/i) c X this contradicts

(d). Therefore, dim A' < 1 [4, 1.8.10]. By connectivity of X we have that 1 <

dim X. We conclude that dim X = 1 which establishes (c).   □

We will now show that X is not countable dense homogeneous. First we prove

two important lemmas.

3.3. Lemma. Let U c X be open and nonempty and let ^ be a family of countably

many nowhere dense subsets of X. Then \ £/\ U ^ | = c. /« particular, X is Baire.

Proof. Let ~ denote the closure operator in R2 and let U' c R2 be open such

that U' n X = U. Put S = {D: D Gty). Since X is dense in R2, by Lemma

3.2(a), each member of & is nowhere dense in R2. Consequently, t/'\ U S

contains a Cantor set, say AT. This Cantor set, as any Cantor set, contains a family

of c pairwise disjoint Cantor sets. Therefore, the desired result follows from Lemma

3.2(a).    □



146 JAN VAN MILL

3.4. Lemma. Ifh:X-^X is any homeomorphism, then \{x G X: h(x) G V(x))\ < c.

Proof. Suppose not. By Lemma 2.1 find Gs's S and T containing X such that h

can be extended to a homeomorphism h': S —» T. Then h' G § and therefore, by

Lemma 3.2(d), there is an x G dom(h') n X with h'(x) G X. Since dom(A') n X =

X and h! extends h, we find that for some x G X we have that h(x) G X, which is a

contradiction.    □

We can now show that X is not countable dense homogeneous.

3.5. Theorem. There is a countable dense set E G X such that for each homeomor-

phism h: X -> X we have that E n h(E) =£ 0. This implies that X is not countable

dense homogeneous.

Proof. Let D c X he a countable dense set and put

E=  (J    V(x).
IE/)

Observe that, since i> is a subgroup of Auth(R2), E g X. We claim that F is as

required. To this end, let h: X -> X he a homeomorphism. For each <p G $ put

Ay = {x G X: h(x) = q>(x)}. Notice that Av is closed in X and that, by Lemma

3.4,

X\\J  Aw< c.

Consequently, by Lemma 3.3, there is a <p G $ such that Av is not nowhere dense.

Since Av is closed, it contains a nonempty open set, and therefore must intersect E.

Consequently, we can find a point x G D and an element uV G <ï> with \p(x) G A^.

We conclude that

A(*(*)) = ¥>(*(*)) = (<P ° M*) e V(x) G E,

since 4> is a subgroup of Auth(R2). Therefore, E n h(E) =£ 0.

By Lemma 3.3 there is a countable dense set F c X which misses E. Clearly, no

autohomeomorphism of X can map E onto F.    □

3.6. Remark. There only remains to prove that X is strongly locally homoge-

neous. This will be postponed until the next section. If F c X is as in the proof of

Theorem 3.5 then E has, as we will show, the property that for any countable

compact AT c X there is a homeomorphism h: X —* X with h(E \J K) = E. Theo-

rem 3.5 shows that the compactness of K is essential. This is very unusual of

course.

4. X is strongly locally homogeneous. By Lemma 3.4, X cannot have "many"

autohomeomorphisms. However, X has some, since by construction cp(X) = X for

all <p G <I>. Therefore, if <p G <I> then <p\X is an autohomeomorphism of X. We will

use these countably many homeomorphisms to show that X is strongly locally

homogeneous and hence to produce c autohomeomorphisms of X. Our technique

of proof is inspired by van Mill [8].

First note that, by the special choice of $, for any two elements H0, Hx G %

there is an autohomeomorphism h of X with h(H0 n A') = Hx n X. This shows
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that for any two points x, y G X and e > 0 there is an autohomeomorphism h of X

with d(h(x), y) < e.

We claim that if H G % and if x, v G int H n X then there is an autohomeo-

morphism h: X —» X with h(x) = y and h\(X\H) = id. This obviously implies that

X is strongly locally homogeneous.

To this end, take H G % and x, y G int H n X. Without loss of generality we

may assume that diam H < 1. The homeomorphism we are looking for will be of

the form lim^.,^ ip„ °  • • •   ° \px, where each i^„ is of the form <pn\X with <p„ G <ï>.

For each n G N we will construct an element Hn G % with v G int Hn c Hn G

H and a homeomorphism \p„: X —» X such that if Vn = int Hn n X then

(1) diam V„ < 2-<"-1) and Hn c int Hn_x;

(2) x G *,' o  ...   o ^-i(K„) and diam *,' •  ■ ■ ■   " ^'(^ < 2^"-1);

(3)^|(A-\/in_1) = id.

Let (¡p, G $ be such that d(<px(x),y) <\ and m1|(A'\//') = id. Put \px = <px\X and

Hx = H. Suppose that we have constructed \¡>¡ and H¡ for all i < n. Choose

F0 G % such that «/<„ ° • • • ° $\(x) G int F0 n X c int //„ while moreover

diam >//f ' ° • • • ° ^„"'(int F0 n A") < 2~n. In addition, let F, G % be such that

v G int F, c F, c int Hn and diam F, < 2"". There is an element <p„+1 E$ with

<Pn+i(^o) = ^i and?)l,+I|(A'NÄ,J,) = id. Define ^n+1 = ç»ll+1|A'and/iB+1 = F,.

Observe that if ¿(p, x) > 2_(n_2) then ^„_i ° • ■ • ° ¡px(p) G Hn_x and conse-

quently, by (1) and (3),

4>k"  • • •   " *i(p) - **-i °  ■ • •   "^(f)

for all A: > n — 1.

This implies that if we define h: X —» X by h = limn^0O i^n ° ■ • • ° xpx, then h is

well defined. Observe that h(x) = y and h\(X~\H) = id. The easy check that A is a

homeomorphism is left to the reader.

4.1. Remark. Using the same ideas as in this paper it is easy to verify that there

exists for each n G {0, 1, 2, . . ., oo} a homogeneous, strongly locally homoge-

neous space of dimension n which is not countable dense homogeneous.

4.2. Remark. It is trivial to adapt the above technique to show that the countable

dense subset of X constructed in the proof of Theorem 3.5 has the property

claimed in Remark 3.6.

4.3. Remark. The fact that Lavrentieff's Lemma can be used to construct rigid

( = no autohomeomorphisms beyond the identity) spaces is well known; for details

see Kuratowski [6]. In this paper we used this lemma to kill certain, but not all,

homeomorphisms since we aimed at getting a homogeneous space. That this is

possible was suggested by van Douwen [3].
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