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POLYNOMIAL GENERATORS FOR H¿BSU) AND H¿BSO; ZJ

STANLEY O. KOCHMAN1

Abstract. Specific formulas are given for choosing polynomial generators of

H^(BSU; R), for various R, in terms of the canonical polynomial generators of

H¿BU; R). The analogous formulas for polynomial generators of H (BSO; ZJ

are also given.

1. Introduction. Let Ä be a commutative ring. Then H*(BU; R) =

R[CX, . . . , C„, . . . ] where C„ G H2"(BU; R) is the nth Chern class with coprod-

uct A(CJ = ZUo Ck 0 Cn_k. See [2, 9-39]. Let a„ = (C,)* in the dual basis of the
basis of H*(BU; R) of monomials in the Chern classes. Then 77,(7? Í/; R) =

R[ax, . . . , an, . . . ] with coproduct A(an) = 2"_0 a¡ 0 a„_¡. Let/: BSU-► BU be

the canonical map. Then f: H*(BU; R) ->• H*(BSU; R) is the canonical

projection map from R[CX, . . ., C„, . . . ] to R[CX, . .. , C„,. . . ]/(C,). Dually

/„: H¿BSU; R) -> H^BU; R) is a monomorphism and H,(BSU; R) =

R[Y2, . . . , Yn, . . .] with deg Yn = 2« [1, Lemma 2.4]. In this paper we define

specific polynomial generators Y2, . . ., Yn, . . . which have simple explicit expres-

sions as polynomials in the ax, . . ., an, . . . .

In §2 we define a coaction \p on 77,(7?t/; 7?) such that Image/, equals the

elements of Hm(BU; R) which are primitive under the coaction \p. We apply [4,

Theorem 2.1] in §3 to define polynomial generators for H ¿BSU; Q). We then

determine polynomial generators for H ¿BSU; Z^p)) and Ht(BSU; Zp) with p

prime in §4. We give the corresponding results for H ¿BSO; Zj) in §5.

2. A coaction on 77,(7?t/; R). The cup-product on H*(BU; R) defines a module

structure </>: R[CX] 0 H*(BU; R) -> H*(BU; R). Dually we have a coaction

i//: H¿BU; R)^>T0 H¿BU; R).

T = ©"_0 Ryn is the divided polynomial Hopf algebra with deg y„ = 2», ymvn =

(m, n)ym+„ and \p(y„) = '2k=o yk 0 y„-k- We collect the basic properties of \p in

the following theorem.

Theorem 2.1. \p: H¿BU; R) -+T 0 H¿BU; R) is a coassociative counital coac-

tion and an algebra homomorphism. The primitive elements of 77,(77C/; 7?) under \p

are

P+H¿BU; R) = Image/, * H¿BSU; R).
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Proof. <|> is unital and associative, so \p = <i>* is counital and coassociative. Let

Y E H*(BU; R) with A(Y) = 2,- YJ 0 Yf. Then
A

Ar>(cr 0 y) = A(c,y) = 2 20". « - OCjT; ® c?-'y/
/-o y

= 2 2 (»', « - 0*(cí ® iy) ® <Kcf~' ® 17)
,=o y

= (<i> 0 d») ° (i ® t 0 i) » (a 0 axc; ® y).

Thus <t> is a map of coalgebras, so i// = d>* is an algebra homomorphism. Alterna-
A det X 1

tively \p is induced by \p': t/—» U X U -» (/(l) X I/, and chasing the relevant

diagrams for t// shows \p to be coassociative, counital and an algebra homomor-

phism. If Z G H¿BSU; R), Y E H*(BU; R) and s > 0 then (\pf¿Z), Cf $ T>

= </,(Z), CÍT> = <Z,/*(C,r)> = 0. Thus Image/, c P+H¿BU; R). If X E

P^H¿BU; R) and 5 > 0 then <Jf, C,*y> = <MX\ C¡ 0 Y} = 0. Thus X is an

7?-linear combination of the (Cn¡ . . . C^)* with 2 < nx < • • ■ < «,. These

(C„ . . . C^)* are an Ä-basis for Image/,.    Q.E.D.

When R = Zp,p prime, all/>th powers of positive degree elements are zero in T.

Thus all pth powers in 77,(73 U; Zp) are ^-primitive. We thus have the following

consequence of Theorem 2.1.

Corollary 2.2. {xp|x G H ¿BU; Zp)} c Image/,.

3. Polynomial generators for H¿BSU; Q). Throughout this section let p be a

fixed prime. We will define a sequence of elements Gpk in H¿BSU) which are

polynomial generators for H¿BSU; Q). We wish to apply [4, Theorem 2.1] to a

subcomodule {Y2, . . . , Y„, . . . } of 77,(5(7) such that 4>(Yn) c 2"~0 T2i 0

H2n_2i(BU). Since \¡/(an) = 2"_0 Y¡ ® an-¡ contains yn 0 1 as a summand we

cannot let Yn equal an. We construct suitable Yn in the following lemma.

Lemma 3.1. Let Y„„ = p"a„ — 2 a¡ ... a¡ for n > 1 where the sum is taken over

all (i,, . . . ,ip) such that the ik > 0 and /,+ ••• + i  = n. Then YpX = 0 and

HYp,n) = "ilPkyk0Yp_n_k.
k=0

Proof. YpX = pax —21... la,l . . . 1 = pax — pax = 0. Let n > 2. The sum-

mand of WJ„„) in r2„ 0 H0(BU) ispnyn0l--Zyi¡...yip0l= p"yn 0 1 -

S(/„ ...,ip)yn0l=p"y„0l-(l + --- +l)"Yn 0\=pnyn0l-p"yn0l =
0. The summand of $(Ypn) in T2k 0 H2n_2k(BU) for k > 0 is y = p"yk 0 a„_k -

2 y,x . ■ ■ y¡ 0 ah¡ . . . a¿ where the sum is taken over all (/,, . . . , ip) and

(A,, . . . ,hp) with A, > 0, /, > 0, /, + • • • + ip = A:, A, + • • • +hp = n — k. Thus

y = /»"Y« ® «„_* - 2(/,, . . ., i,)?* ® ah¡ . . . a^

= P"yk ® «.-* - 2(1 + • • • fD** 0ahx...ahp

= P\ 0[p"-kan-k - 2y, 0 ah¡ . . . a„J = pkyk 0 Yp,n_k.

Note that v is zero when k = n — \.   Q.E.D.
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We now apply [4, Theorem 2.1] to the Yp2, . . . , Ypn, ....

Theorem 3.2. Letp be aprime. Define Gpn E H2n(BU) inductively on n > 2 by

Gp.n =   yp.n -   2 P"-\-kGp,k.
k = 2

Then

(a) G,„ = y„,„ + ^k-J2pn-kx(an-k)Yn_k and

X(a,)= 2 (-\y+-+\ex,...,e,)at...af-,
e,+2e2+ ■ ■ • +te, = t

(b) 77,(73/7; Q) = Q[ax, Gp¿, ..., Gp<n, ...];
(c) H¿BSU; Q) « Image/, = Q[Gpa, ..., Gp,„, ...].

Proof. We apply [4, Theorem 2.1] to the algebra 77,(7? £/; Q) with its polynomial

generators G = {pax, Yp2, . . . , Ypn, . ..}. H¿BU; Q) has the coaction \p and by

Lemma 3.1 the (?-space with basis G is a subcomodule of 77,(7? t/; Q). In the

notation of [4, Theorem 2.1] we have 0nk = p"~ky„-k for 2 < k < n, BnX = 9n0 = 0

for n > 2, 0X x = 1 and 9X0 = pyx. Define <j>nk = p"~ka„_k for 0 < k < n. Then

MhJ = 27=0*7Â &/>"-'*-'*„_*_, = 2?_o*'0,v>_,. ®<i>„_a = 2nA_,ö„,A ®*M
where h = n — i. Let 51 = {2, 3,. . . } since 0B>, = 9n0 = 0 fox n > 2. Thus the

hypotheses of [4, Theorem 2.1 ] are satisfied. We therefore conclude the first part of

(a), (b) and 7^77,(73.7; Q) = Q[Gp¿, ..., Gp¡n, ...]. Now (c) follows from Theo-

rem 2.1. Observe that the coproduct which [4, Theorem 2.1] defines on 77,(776/) is

the canonical one. Thus the second part of (a) follows from [4, Corollary 4.2(v)].

Q.E.D.
Observe that Gp„ = pG'pn in H¿BSU) if n ^ 0 mod/). The following criterion

shows that the only Gp„ or G'pn which is a polynomial generator of H¿BSU) is

G2,2-

Theorem 3.3. Let v(n) be p if n = ps,p prime, and let v(n) be 1 if n is not a power

of a prime. Then an element G of H2¿BSU) is a polynomial generator if and only if

f¿G) = ±v(n)an modulo decomposables.

Proof. Let PH2n(BU) = Zp„. Write n = qsx< . . . qp with qx, . . . , qt distinct

primes. Then f*(p„) contains 2' =, ± qx' . . . q¡'. . . Ç<S'C$ ^ ^ as a summand.

Thus PH2n(BSU) = Zf*(pn) when t > 2. Observe that f*(pq.) contains ±qC}-i as

a summand. In addition q divides f*(pq.) because f*(pq.) =f*(Cf) = 0 mod q.

Thus PH^(BSU) = Z{f*(Pq')Lql and PH2"(BSU) = Zf/V«)^] for all n > 2.

Hence QH2¿BSU) -* QH2¿BU) is Z Ä? Z.    Q.E.D.

4. Polynomial generators for H¿BSU; Z(y>)) and H¿BSU; Zp). We begin with a

criterion for determining whether a given element of H¿BSU; Z(/))) or

77,(775(7; Zp) is a polynomial generator. We then use the elements of H¿BSU)

defined in §3 to construct polynomial generators for H¿BSU; Z(í)) and for

H¿BSU; Zp). We conclude by noting a simple polynomial generator for

H4¿BSU; Zp), p odd. Let p be a fixed prime throughout this section.
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Theorem 4.1. (a) G is a polynomial generator of H2¿BSU; Z(/J)) // and only if

f¿G) = pa„ modulo decomposables where

p | p.      if n is not a power of p,

p2 \ p.    if n is a power of p.

(b) For n not a power of p, G is a polynomial generator of H2¿BSU; Zp) if and

only if f¿G) s pan modulo decomposables with 0 ?* p. E Zp. When n = ps, ag,-> isfm

of a polynomial generator of H^^BSU; Zp).

Proof. Note that (a) follows from (b) and the observation that f¿Gpp.) =

(pp' — p)ap, modulo decomposables. To prove (b) write PH2n(BU; Zp) = Z *&„,

n = psm with m ^ 0 mod p. Then $„ = 9**' so by induction on degree

PH2"(BSU; Zp) = Z^i^J
r r-

when  n  is  not  a  power  of p.  This  gives  (b)  in  this  case.  When  n = ps,

PH^XBSU; Zp) = Z/*[¿(% - Cf)r'~' and

\(% - cr) .<<- jV-\% - Cf) »v

= ~[(p - 1)\]P"\CC10 • • ■ 0Cf",ap,-i0- • ■ 0ap,-,)

--[(p-i)iy'-lmo

modulo/». Thus by Corollary 2.2, a*.-i is/, of a polynomial generator.   Q.E.D.

Theorem 4.2. In H¿BU; Z(/))) define G'n and then V'n by induction on n from the

following formulas :

G'„ = — Gpn   ifn^O mod p,n>2,

Gp' = Gp,p''

G'nv=-[ GPW  -   V'™\      V™   >2'm *P'>

v;. = g>.

If n =£ps, n > 2 and G„' = (p"~x - \)an + E*^,..., «. «f . . . a? with the e¡ > 0

and ae        e E Z then

V = ——— \ G'p — V n Ve' Ve']
"        pn-l _   l[U" ¿"'i.«K '     ■■■y'\-

Then V'H s a% modulo p and

H¿BSU; Z(p)) m Image/, = Zip)[ G'2, . . ., G'n,. . . ].

Proof. Observe that Gpn is divisible by p if n ^ 0 mod p. Also Gppm = a£

modulo/). By the induction hypothesis Gppm - V'm is divisible byp when m is not a

power of p. Thus all the G'n are well-defined elements of f¿H¿BSU; Z(/J))). Note
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that G'n = (/»""' - \)an modulo decomposables if n is not a power of p. In this

case

G'n' = (t'-1 - 1R + 2 <.,*T ■ ■ • «f mod/,

b (/>"-■ -1)< + 2 «<„...,<, t1 • • ■ y;e- mod/..

Thus   V'n =a%modp  when  n   is  not  a  power  of p.   V'p, = Gy+i = Gpp,+¡ =

a£, mod p. Also Gp, = (/?''* — p)ap, modulo decomposables. By Theorem 4.1 the

G2, . . ., G'n,. . . are polynomial generators for Image/,.    Q.ED.

When working mod p one can replace the Gpn by the simpler Y    in most cases.

Theorem 4.3. In H¿BU; Z(p)) define the G„ and then Vn by induction on n from

the following formulas :

Gn=-Ypn   ifn^0,\modp,n>2,

Gp, = YpJI,   if s > 1,

G»v = \ [ YP.ny> - ym]    if m >2,m +p>,

G^p+i = - y,„+i - a\<    if m > 1,

Vp. = Gp,^    ifs>0.

If n ¥=ps, n > 2 and G„ = (p"~x - l)a„ + 2ae_ eaf' . . . a? with the e, > 0

andaex       e¡ E Zthen

^-^rfryl^-S^.eyv...v:\

Then V„ = a' modulo p and H¿BSU; Zp) - Image/, = Zp[G2,. . ., G„, . . . ].

Proof. Observe that for n ^ 1 mod/), Gp„ = Ypn modulo p2. For m > 1,

Gp,pm+¡ — Yp,n ~ Pa\am modulo/)2. Thus G„ = G'n modulo p and V„ s V'n modulo

p for all n > 2. Since H¿BSU; Zp) = 77,(771/; Z(/J)) 0 Zp it follows that

fJ,H¿BSU; Zp)) = f¿H¿BSU; Zip))) 0 Zp. Thus our theorem follows from The-

orem 4.2.    Q.E.D.

Theorem 4.4. 2a2n + (-1)"«« + 2£_11(-l)*2a¿a2„_¿ is a polynomial generator for

H¿BSU; R) if 2 is a unit in R.

Proof. The canonical map g: BSp -> BU factors through BSU. Thus Image g,

C Image/,. By [2, 17-06], 2a2„ + (-l)na2 + 2nk-\(-l)k2aka2n_k is in Image g,.

Q.E.D.
Observe that in Theorem 4.4 we can take R to be Z(p) or Zp for a p an odd

prime.

5. Polynomial generators for H¿BSO; ZJ. Recall [2, 17-13] that H*(BO; Z¿ =

Z2[wx, . . . ,wn, . . .] where wn G H"(BO; Z2) is the nth Steifel-Whitney class with

coproduct A(w„) = 2^=0 wk 0 wn_k. Let bn = (wx)* in the dual basis of the basis
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of H*(BO; Z2) of monomials in the Stiefel-Whitney classes. Then H ¿BO; Z^ =

Z2[bx, . . ., bn, . . .] with coproduct A(A„) = 2*_0 bk 0 bn_k. The canonical map

g: BSO -» BO induces the quotient map Z2[wx, . . . , w„, . . . ] —>

Z2[wx, . . . ,wn, . . . ]/(wx) in Z2-cohomology. Thus we have the same algebraic

situation as for BSU with Z2-coefficients. The only difference is that the degrees

are halved. Thus g, is a monomorphism and H ¿BSO; Z^ is a polynomial algebra

with one generator in each degree greater than one. From §4 we know how to pick

polynomial generators for H ¿BSO; Z2) as specific polynomials in

bx,...,b„,-

Theorem 5.1. In Z[bx, . . . , bn, . . . ] we define elements G„ and then  Vn by

induction on n > 2 from the following formulas:

2»-i_i

G2, = 2A2, +    2   2A,.A2,_,. + *§._,,
1 = 1

n

G2n + i = A2n+1 + 2 bib2n_i+x + bxb2   forn > 1,
i = i

G2n = b2n +  2 6,¿2„_, + Uv„ + b2)   for n > 1,
/=i z

V2,   =   Gy + 1.

Ifn¥=2s,n>3 and G„ - bH + 2«,,,      e,bV ■ ■ ■ à? then

Vn=G2 + ^ae.eVf...V,e:

Then V„ = b2 modulo 2 and H ¿BSO; Z¿ at Image g, = Z2[G2, . . . , G„, . . . ].

Q.E.D.

The above formula for G2n+X was observed by B. Gray [3].
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