POLYNOMIAL GENERATORS FOR $H_{*}(B S U)$ AND $H_{*}\left(B S O ; Z_{2}\right)$

STANLEY O. KOCHMAN ${ }^{1}$

Abstract

Specific formulas are given for choosing polynomial generators of $H_{*}(B S U ; R)$, for various R, in terms of the canonical polynomial generators of $H_{*}^{*}(B U ; R)$. The analogous formulas for polynomial generators of $H_{*}\left(B S O ; Z_{2}\right)$ are also given.

1. Introduction. Let R be a commutative ring. Then $H^{*}(B U ; R)=$ $R\left[C_{1}, \ldots, C_{n}, \ldots\right]$ where $C_{n} \in H^{2 n}(B U ; R)$ is the nth Chern class with coproduct $\Delta\left(C_{n}\right)=\sum_{k=0}^{n} C_{k} \otimes C_{n-k}$. See [2,9-39]. Let $a_{n}=\left(C_{1}^{n}\right)^{*}$ in the dual basis of the basis of $H^{*}(B U ; R)$ of monomials in the Chern classes. Then $H_{*}(B U ; R)=$ $R\left[a_{1}, \ldots, a_{n}, \ldots\right]$ with coproduct $\Delta\left(a_{n}\right)=\sum_{i=0}^{n} a_{i} \otimes a_{n-i}$. Let $f: B S U \rightarrow B U$ be the canonical map. Then $f^{*}: H^{*}(B U ; R) \rightarrow H^{*}(B S U ; R)$ is the canonical projection map from $R\left[C_{1}, \ldots, C_{n}, \ldots\right]$ to $R\left[C_{1}, \ldots, C_{n}, \ldots\right] /\left(C_{1}\right)$. Dually $f_{*}: \quad H_{*}(B S U ; R) \rightarrow H_{*}(B U ; R)$ is a monomorphism and $H_{*}(B S U ; R)=$ $R\left[Y_{2}, \ldots, Y_{n}, \ldots\right]$ with $\operatorname{deg} Y_{n}=2 n[1$, Lemma 2.4]. In this paper we define specific polynomial generators $Y_{2}, \ldots, Y_{n}, \ldots$ which have simple explicit expressions as polynomials in the $a_{1}, \ldots, a_{n}, \ldots$

In §2 we define a coaction ψ on $H_{*}(B U ; R)$ such that Image f_{*} equals the elements of $H_{*}(B U ; R)$ which are primitive under the coaction ψ. We apply [4, Theorem 2.1] in $\S 3$ to define polynomial generators for $H_{*}(B S U ; Q)$. We then determine polynomial generators for $H_{*}\left(B S U ; Z_{(p)}\right)$ and $H_{*}\left(B S U ; Z_{p}\right)$ with p prime in §4. We give the corresponding results for $H_{*}\left(B S O ; Z_{2}\right)$ in $\S 5$.
2. A coaction on $H_{*}(B U ; R)$. The cup-product on $H^{*}(B U ; R)$ defines a module structure $\phi: R\left[C_{1}\right] \otimes H^{*}(B U ; R) \rightarrow H^{*}(B U ; R)$. Dually we have a coaction

$$
\psi: H_{*}(B U ; R) \rightarrow \Gamma \otimes H_{*}(B U ; R) .
$$

$\Gamma=\bigoplus_{n=0}^{\infty} R \gamma_{n}$ is the divided polynomial Hopf algebra with $\operatorname{deg} \gamma_{n}=2 n, \gamma_{m} \gamma_{n}=$ $(m, n) \gamma_{m+n}$ and $\psi\left(\gamma_{n}\right)=\sum_{k=0}^{n} \gamma_{k} \otimes \gamma_{n-k}$. We collect the basic properties of ψ in the following theorem.
Theorem 2.1. $\psi: H_{*}(B U ; R) \rightarrow \Gamma \otimes H_{*}(B U ; R)$ is a coassociative counital coaction and an algebra homomorphism. The primitive elements of $H_{*}(B U ; R)$ under ψ are

$$
P_{\psi} H_{*}(B U ; R)=\text { Image } f_{*} \simeq H_{*}(B S U ; R)
$$

[^0]Proof. ϕ is unital and associative, so $\psi=\phi^{*}$ is counital and coassociative. Let $Y \in H^{*}(B U ; R)$ with $\Delta(Y)=\Sigma_{j} Y_{j}^{\prime} \otimes Y_{j}^{\prime \prime}$. Then

$$
\begin{aligned}
\Delta \phi\left(C_{1}^{n} \otimes Y\right) & =\Delta\left(C_{1}^{n} Y\right)=\sum_{i=0}^{n} \sum_{j}(i, n-i) C_{1}^{i} Y_{j}^{\prime} \otimes C_{1}^{n-i} Y_{j}^{\prime \prime} \\
& =\sum_{i=0}^{n} \sum_{j}(i, n-i) \phi\left(C_{1}^{i} \otimes Y_{j}^{\prime}\right) \otimes \phi\left(C_{1}^{n-i} \otimes Y_{j}^{\prime \prime}\right) \\
& =(\phi \otimes \phi) \circ(1 \otimes T \otimes 1) \circ(\Delta \otimes \Delta)\left(C_{1}^{n} \otimes Y\right) .
\end{aligned}
$$

Thus ϕ is a map of coalgebras, so $\psi=\phi^{*}$ is an algebra homomorphism. Alternatively ψ is induced by $\psi^{\prime}: U \xrightarrow{\Delta} U \times U \xrightarrow{\text { det } \times 1} U(1) \times U$, and chasing the relevant diagrams for ψ^{\prime} shows ψ to be coassociative, counital and an algebra homomorphism. If $Z \in H_{*}(B S U ; R), Y \in H^{*}(B U ; R)$ and $s>0$ then $\left\langle\psi f_{*}(Z), C_{1}^{s} \otimes Y\right\rangle$ $=\left\langle f_{*}(Z), C_{1}^{s} Y\right\rangle=\left\langle Z, f^{*}\left(C_{1}^{s} Y\right)\right\rangle=0$. Thus Image $f_{*} \subset P_{\psi} H_{*}(B U ; R)$. If $X \in$ $P_{\psi} H_{*}(B U ; R)$ and $s>0$ then $\left\langle X, C_{1}^{s} Y\right\rangle=\left\langle\psi(X), C_{1}^{s} \otimes Y\right\rangle=0$. Thus X is an R-linear combination of the $\left(C_{n_{1}} \ldots C_{n_{1}}\right)^{*}$ with $2 \leqslant n_{1} \leqslant \cdots \leqslant n_{t}$. These $\left(C_{n_{1}} \ldots C_{n_{1}}\right)^{*}$ are an R-basis for Image f_{*}. Q.E.D.

When $R=Z_{p}, p$ prime, all p th powers of positive degree elements are zero in Γ. Thus all p th powers in $H_{*}\left(B U ; Z_{p}\right)$ are ψ-primitive. We thus have the following consequence of Theorem 2.1.

Corollary 2.2. $\left\{x^{p} \mid x \in H_{*}\left(B U ; Z_{p}\right)\right\} \subset$ Image f_{*}.
3. Polynomial generators for $H_{*}(B S U ; Q)$. Throughout this section let p be a fixed prime. We will define a sequence of elements $G_{p, k}$ in $H_{*}(B S U)$ which are polynomial generators for $H_{*}(B S U ; Q)$. We wish to apply [4, Theorem 2.1] to a subcomodule $\left\{Y_{2}, \ldots, Y_{n}, \ldots\right\}$ of $H_{*}(B U)$ such that $\psi\left(Y_{n}\right) \subset \sum_{i=0}^{n-1} \Gamma_{2 i} \otimes$ $H_{2 n-2 i}(B U)$. Since $\psi\left(a_{n}\right)=\sum_{i=0}^{n} \gamma_{i} \otimes a_{n-i}$ contains $\gamma_{n} \otimes 1$ as a summand we cannot let Y_{n} equal a_{n}. We construct suitable Y_{n} in the following lemma.

Lemma 3.1. Let $Y_{p, n}=p^{n} a_{n}-\sum a_{i_{1}} \ldots a_{i j}$ for $n \geqslant 1$ where the sum is taken over all $\left(i_{1}, \ldots, i_{p}\right)$ such that the $i_{k} \geqslant 0$ and $i_{1}+\cdots+i_{p}=n$. Then $Y_{p, 1}=0$ and

$$
\psi\left(Y_{p, n}\right)=\sum_{k=0}^{n-2} p^{k} \gamma_{k} \otimes Y_{p, n-k} .
$$

Proof. $Y_{p, 1}=p a_{1}-\Sigma 1 \ldots 1 a_{1} 1 \ldots 1=p a_{1}-p a_{1}=0$. Let $n \geqslant 2$. The summand of $\psi\left(Y_{p, n}\right)$ in $\Gamma_{2 n} \otimes H_{0}(B U)$ is $p^{n} \gamma_{n} \otimes 1-\Sigma \gamma_{i_{1}} \ldots \gamma_{j} \otimes 1=p^{n} \gamma_{n} \otimes 1-$ $\Sigma\left(i_{1}, \ldots, i_{p}\right) \gamma_{n} \otimes 1=p^{n} \gamma_{n} \otimes 1-(1+\cdots+1)^{n} \gamma_{n} \otimes 1=p^{n} \gamma_{n} \otimes 1-p^{n} \gamma_{n} \otimes 1=$ 0 . The summand of $\psi\left(Y_{p, n}\right)$ in $\Gamma_{2 k} \otimes H_{2 n-2 k}(B U)$ for $k>0$ is $y=p^{n} \gamma_{k} \otimes a_{n-k}-$ $\sum \gamma_{i_{1}} \ldots \gamma_{i_{p}} \otimes a_{h_{1}} \ldots a_{h_{p}}$ where the sum is taken over all $\left(i_{1}, \ldots, i_{p}\right)$ and $\left(h_{1}, \ldots, h_{p}\right)$ with $h_{t} \geqslant 0, i_{t} \geqslant 0, i_{1}+\cdots+i_{p}=k, h_{1}+\cdots+h_{p}=n-k$. Thus

$$
\begin{aligned}
y & =p^{n} \gamma_{n} \otimes a_{n-k}-\Sigma\left(i_{1}, \ldots, i_{p}\right) \gamma_{k} \otimes a_{h_{1}} \ldots a_{h_{p}} \\
& =p^{n} \gamma_{k} \otimes a_{n-k}-\Sigma(1+\cdots+1)^{k} \gamma_{k} \otimes a_{h_{1}} \ldots a_{h_{p}} \\
& =p^{k} \gamma_{k} \otimes\left[p^{n-k} a_{n-k}-\Sigma \gamma_{k} \otimes a_{h_{1}} \ldots a_{h_{p}}\right]=p^{k} \gamma_{k} \otimes Y_{p, n-k} .
\end{aligned}
$$

Note that y is zero when $k=n-1$. Q.E.D.

We now apply [4, Theorem 2.1] to the $Y_{p, 2}, \ldots, Y_{p, n}, \ldots$
Theorem 3.2. Let p be a prime. Define $G_{p, n} \in H_{2 n}(B U)$ inductively on $n \geqslant 2$ by

$$
G_{p, n}=Y_{p, n}-\sum_{k=2}^{n-1} p^{n-k} a_{n-k} G_{p, k}
$$

Then
(a) $G_{p, n}=Y_{p, n}+\sum_{k=2}^{n-1} p^{n-k} \chi\left(a_{n-k}\right) Y_{n-k}$ and

$$
\chi\left(a_{t}\right)=\sum_{e_{1}+2 e_{2}+\cdots+t e_{t}=t}(-1)^{e_{1}+\cdots+e_{1}}\left(e_{1}, \ldots, e_{t}\right) a_{1}^{e_{1}} \ldots a_{t}^{e_{t}} ;
$$

(b) $H_{*}(B U ; Q)=Q\left[a_{1}, G_{p, 2}, \ldots, G_{p, n}, \ldots\right]$;
(c) $H_{*}(B S U ; Q) \cong \operatorname{Image} f_{*}=Q\left[G_{p, 2}, \ldots, G_{p, n}, \ldots\right]$.

Proof. We apply [4, Theorem 2.1] to the algebra $H_{*}(B U ; Q)$ with its polynomial generators $G=\left\{p a_{1}, Y_{p, 2}, \ldots, Y_{p, n}, \ldots\right\} . H_{*}(B U ; Q)$ has the coaction ψ and by Lemma 3.1 the Q-space with basis G is a subcomodule of $H_{*}(B U ; Q)$. In the notation of [4, Theorem 2.1] we have $\theta_{n, k}=p^{n-k} \gamma_{n-k}$ for $2 \leqslant k \leqslant n, \theta_{n, 1}=\theta_{n, 0}=0$ for $n \geqslant 2, \theta_{1,1}=1$ and $\theta_{1,0}=p \gamma_{1}$. Define $\phi_{n, k}=p^{n-k} a_{n-k}$ for $0 \leqslant k \leqslant n$. Then $\psi\left(\phi_{n, k}\right)=\sum_{i=0}^{n-k} p^{i} \gamma_{i} \otimes p^{n-k-i} a_{n-k-i}=\sum_{i=0}^{n-k} \theta_{n, n-i} \otimes \phi_{n-i, k}=\sum_{h=k}^{n} \theta_{n, h} \otimes \phi_{h, k}$ where $h=n-i$. Let $S=\{2,3, \ldots\}$ since $\theta_{n, 1}=\theta_{n, 0}=0$ for $n \geqslant 2$. Thus the hypotheses of [4, Theorem 2.1] are satisfied. We therefore conclude the first part of (a), (b) and $P_{\psi} H_{*}(B U ; Q)=Q\left[G_{p, 2}, \ldots, G_{p, n}, \ldots\right]$. Now (c) follows from Theorem 2.1. Observe that the coproduct which [4, Theorem 2.1] defines on $H_{*}(B U)$ is the canonical one. Thus the second part of (a) follows from [4, Corollary 4.2(v)]. Q.E.D.

Observe that $G_{p, n}=p G_{p, n}^{\prime}$ in $H_{*}(B S U)$ if $n \neq 0 \bmod p$. The following criterion shows that the only $G_{p, n}$ or $G_{p, n}^{\prime}$ which is a polynomial generator of $H_{*}(B S U)$ is $G_{2,2}$.

Theorem 3.3. Let $\nu(n)$ be p if $n=p^{s}, p$ prime, and let $\nu(n)$ be 1 if n is not a power of a prime. Then an element G of $H_{2 n}(B S U)$ is a polynomial generator if and only if $f_{*}(G) \equiv \pm \nu(n) a_{n}$ modulo decomposables.

Proof. Let $P H^{2 n}(B U)=Z p_{n}$. Write $n=q_{1}^{s_{1}} \ldots q_{t}^{s_{t}}$ with q_{1}, \ldots, q_{t} distinct primes. Then $f^{*}\left(p_{n}\right)$ contains $\Sigma_{i=1}^{t} \pm q_{1}^{s_{1}} \ldots \widehat{q_{i}^{s_{i}}} \ldots q_{t}^{s_{i}^{s}} C_{q_{1}^{q_{1}}}^{q_{1}} \ldots q_{i}^{q_{i}^{i}} \ldots \widehat{q_{i}^{i_{1}}}$ as a summand. Thus $P H^{2 n}(B S U)=Z f^{*}\left(p_{n}\right)$ when $t \geqslant 2$. Observe that $f^{*}\left(p_{q^{3}}\right)$ contains $\pm q C_{q^{\text {s-1 }}}^{q}$ as a summand. In addition q divides $f^{*}\left(p_{q^{s}}\right)$ because $f^{*}\left(p_{q^{s}}\right) \equiv f^{*}\left(C_{1}^{q^{\prime}}\right) \equiv 0 \bmod q$. Thus $P H^{2 q^{\prime}}(B S U)=Z\left[f^{*}\left(p_{q^{*}}\right) \frac{1}{q}\right]$, and $P H^{2 n}(B S U)=Z\left[f^{*}\left(p_{n}\right) \frac{1}{\overline{(n)}}\right]$ for all $n \geqslant 2$. Hence $Q H_{2 n}(B S U) \rightarrow Q H_{2 n}(B U)$ is $Z \xrightarrow{\nu(n)} Z$. Q.E.D.
4. Polynomial generators for $H_{*}\left(B S U ; Z_{(p)}\right)$ and $H_{*}\left(B S U ; Z_{p}\right)$. We begin with a criterion for determining whether a given element of $H_{*}\left(B S U ; Z_{(p)}\right)$ or $H_{*}\left(B S U ; Z_{p}\right)$ is a polynomial generator. We then use the elements of $H_{*}(B S U)$ defined in $\S 3$ to construct polynomial generators for $H_{*}\left(B S U ; Z_{(p)}\right)$ and for $H_{*}\left(B S U ; Z_{p}\right)$. We conclude by noting a simple polynomial generator for $H_{4 n}\left(B S U ; Z_{p}\right), p$ odd. Let p be a fixed prime throughout this section.

Theorem 4.1. (a) G is a polynomial generator of $H_{2 n}\left(B S U ; Z_{(p)}\right)$ if and only if $f_{*}(G) \equiv \mu a_{n}$ modulo decomposables where

$$
\begin{cases}p \nmid \mu & \text { if } n \text { is not a power of } p \\ p^{2} \nmid \mu & \text { if } n \text { is a power of } p\end{cases}
$$

(b) For n not a power of p, G is a polynomial generator of $H_{2 n}\left(B S U ; Z_{p}\right)$ if and only if $f_{*}(G) \equiv \mu a_{n}$ modulo decomposables with $0 \neq \mu \in Z_{p}$. When $n=p^{s}, a_{p}^{p,-1}$ is f_{*} of a polynomial generator of $H_{2 p^{\prime}}\left(B S U ; Z_{p}\right)$.

Proof. Note that (a) follows from (b) and the observation that $f_{*}\left(G_{p, p^{s}}\right) \equiv$ ($\left.p^{p^{s}}-p\right) a_{p}$, modulo decomposables. To prove (b) write $P H^{2 n}\left(B U ; Z_{p}\right)=Z_{p} \mathscr{P}_{n}$, $n=p^{s} m$ with $m \neq 0 \bmod p$. Then $\mathscr{P}_{n}=\mathscr{P}_{m}^{p}$ so by induction on degree

$$
P H^{2 n}\left(B S U ; Z_{p}\right)=Z_{p} f^{*}\left(\mathscr{P}_{2 n}\right)
$$

when n is not a power of p. This gives (b) in this case. When $n=p^{s}$, $P H^{2 p^{\prime}}\left(B S U ; Z_{p}\right)=Z_{p} f^{*}\left[\frac{1}{p}\left(\mathscr{P}_{p}-C_{1}^{p}\right)\right]^{p-1}$ and

$$
\begin{aligned}
\left\langle\left[\frac{1}{p}\left(\mathscr{P}_{p}-C_{1}^{p}\right)\right]^{p^{s-1}}\right. & \left., a_{p^{p-1}}^{p}\right\rangle=\left\langle\left[\frac{1}{p} \Delta^{p-1}\left(\mathscr{P}_{p}-C_{1}^{p}\right)\right]^{p^{s-1}}, a_{p^{s-1}} \otimes \cdots \otimes a_{p^{s-1}}\right\rangle \\
& =-[(p-1)!]^{p^{s-1}}\left\langle C_{1}^{p^{s-1}} \otimes \cdots \otimes C_{1}^{p^{s-1}}, a_{p^{s-1}} \otimes \cdots \otimes a_{p^{s-1}}\right\rangle \\
& =-[(p-1)!]^{p^{s-1}} \neq 0
\end{aligned}
$$

modulo p. Thus by Corollary $2.2, a_{p^{s-1}}^{p}$ is f_{*} of a polynomial generator. Q.E.D.
Theorem 4.2. In $H_{*}\left(B U ; Z_{(p)}\right)$ define G_{n}^{\prime} and then V_{n}^{\prime} by induction on n from the following formulas:

$$
\begin{aligned}
G_{n}^{\prime} & =\frac{1}{p} G_{p, n} \quad \text { if } n \neq 0 \bmod p, n \geqslant 2 \\
G_{p^{s}}^{\prime} & =G_{p, p^{s}} \\
G_{m p}^{\prime} & =\frac{1}{p}\left[G_{p, m p}-V_{m}^{\prime}\right] \quad \text { if } m \geqslant 2, m \neq p^{s} \\
V_{p^{s}}^{\prime} & =G_{p^{s+1}}^{\prime}
\end{aligned}
$$

If $n \neq p^{s}, n \geqslant 2$ and $G_{n}^{\prime}=\left(p^{n-1}-1\right) a_{n}+\sum \alpha_{e_{1}, \ldots, e_{1}} a_{1}^{e_{1}} \ldots a_{t}^{e_{i}}$ with the $e_{i}>0$ and $\alpha_{e_{1}, \ldots, e_{t}} \in Z$ then

$$
V_{n}^{\prime}=\frac{1}{p^{n-1}-1}\left[G_{n}^{\prime p}-\sum \alpha_{e_{1}, \ldots, e_{1}} V_{1}^{\prime e_{1}} \ldots V_{t}^{\prime e_{1}}\right]
$$

Then $V_{n}^{\prime} \equiv a_{n}^{p}$ modulo p and

$$
H_{*}\left(B S U ; Z_{(p)}\right) \cong \text { Image } f_{*}=Z_{(p)}\left[G_{2}^{\prime}, \ldots, G_{n}^{\prime}, \ldots\right]
$$

Proof. Observe that $G_{p, n}$ is divisible by p if $n \neq 0 \bmod p$. Also $G_{p, p m} \equiv a_{m}^{p}$ modulo p. By the induction hypothesis $G_{p, p m}-V_{m}^{\prime}$ is divisible by p when m is not a power of p. Thus all the G_{n}^{\prime} are well-defined elements of $f_{*}\left(H_{*}\left(B S U ; Z_{(p)}\right)\right)$. Note
that $G_{n}^{\prime} \equiv\left(p^{n-1}-1\right) a_{n}$ modulo decomposables if n is not a power of p. In this case

$$
\begin{aligned}
G_{n}^{\prime p} & \equiv\left(p^{n-1}-1\right)^{p} a_{n}^{p}+\sum \alpha_{e_{1}, \ldots, e_{1}}^{p} 1_{1}^{p e_{1}} \ldots a_{t}^{p e_{t}} \bmod p \\
& \equiv\left(p^{n-1}-1\right) a_{n}^{p}+\sum \alpha_{e_{1}, \ldots, e_{1}} V_{1}^{\prime e_{1}} \ldots V_{t}^{\prime e_{t}} \bmod p
\end{aligned}
$$

Thus $V_{n}^{\prime} \equiv a_{n}^{p} \bmod p$ when n is not a power of $p . V_{p^{\prime}}^{\prime}=G_{p^{p+1}}^{\prime}=G_{p, p^{p+1}} \equiv$ $a_{p}^{p}, \bmod p$. Also $G_{p^{\prime}}^{\prime} \equiv\left(p^{p^{s}}-p\right) a_{p^{\prime}}$ modulo decomposables. By Theorem 4.1 the $G_{2}^{\prime}, \ldots, G_{n}^{\prime}, \ldots$ are polynomial generators for Image f_{*}. Q.E.D.

When working $\bmod p$ one can replace the $G_{p, n}$ by the simpler $Y_{p, n}$ in most cases.
Theorem 4.3. In $H_{*}\left(B U ; Z_{(p)}\right)$ define the G_{n} and then V_{n} by induction on n from the following formulas:

$$
\begin{aligned}
G_{n} & =\frac{1}{p} Y_{p, n} \quad \text { if } n \neq 0,1 \bmod p, n \geqslant 2, \\
G_{p^{s}} & =Y_{p p^{s}} \quad \text { if } s \geqslant 1, \\
G_{m p} & =\frac{1}{p}\left[Y_{p, m p}-V_{m}\right] \quad \text { if } m \geqslant 2, m \neq p^{s}, \\
G_{m p+1} & =\frac{1}{p} Y_{p, m p+1}-a_{1} a_{m}^{p} \quad \text { if } m \geqslant 1, \\
V_{p^{s}} & =G_{p^{s+1}} \quad \text { if } s \geqslant 0 .
\end{aligned}
$$

If $n \neq p^{s}, n \geqslant 2$ and $G_{n}=\left(p^{n-1}-1\right) a_{n}+\sum \alpha_{e_{1}, \ldots, e_{i}} a_{1}^{e_{1}} \ldots a_{t}^{e_{i}}$ with the $e_{i}>0$ and $\alpha_{e_{1}, \ldots, e_{1}} \in Z$ then

$$
V_{n}=\frac{1}{p^{n-1}-1}\left[G_{n}^{p}-\sum \alpha_{e_{1}, \ldots, e_{1}} V_{1}^{e_{1}} \ldots V_{t}^{e_{t}}\right]
$$

Then $V_{n} \equiv a_{n}^{p}$ modulo p and $H_{*}\left(B S U ; Z_{p}\right) \simeq \operatorname{Image} f_{*}=Z_{p}\left[G_{2}, \ldots, G_{n}, \ldots\right]$.
Proof. Observe that for $n \neq 1 \bmod p, G_{p, n}=Y_{p, n}$ modulo p^{2}. For $m \geqslant 1$, $G_{p, p m+1} \equiv Y_{p, n}-p a_{1} a_{m}^{p}$ modulo p^{2}. Thus $G_{n} \equiv G_{n}^{\prime}$ modulo p and $V_{n} \equiv V_{n}^{\prime}$ modulo p for all $n \geqslant 2$. Since $H_{*}\left(B S U ; Z_{p}\right)=H_{*}\left(B U ; Z_{(p)}\right) \otimes Z_{p}$ it follows that $f_{*}\left(H_{*}\left(B S U ; Z_{p}\right)\right)=f_{*}\left(H_{*}\left(B S U ; Z_{(p)}\right)\right) \otimes Z_{p}$. Thus our theorem follows from Theorem 4.2. Q.E.D.

Theorem 4.4. $2 a_{2 n}+(-1)^{n} a_{n}^{2}+\sum_{k=1}^{n-1}(-1)^{k} 2 a_{k} a_{2 n-k}$ is a polynomial generator for $H_{*}(B S U ; R)$ if 2 is a unit in R.

Proof. The canonical map $g: B S p \rightarrow B U$ factors through $B S U$. Thus Image g_{*} \subset Image f_{*}. By [2, 17-06], $2 a_{2 n}+(-1)^{n} a_{n}^{2}+\sum_{k=1}^{n-1}(-1)^{k} 2 a_{k} a_{2 n-k}$ is in Image g_{*}. Q.E.D.

Observe that in Theorem 4.4 we can take R to be $Z_{(p)}$ or Z_{p} for a p an odd prime.
5. Polynomial generators for $H_{*}\left(B S O ; Z_{2}\right)$. Recall $[2,17-13]$ that $H^{*}\left(B O ; Z_{2}\right)=$ $Z_{2}\left[w_{1}, \ldots, w_{n}, \ldots\right]$ where $w_{n} \in H^{n}\left(B O ; Z_{2}\right)$ is the nth Steifel-Whitney class with coproduct $\Delta\left(w_{n}\right)=\sum_{k=0}^{n} w_{k} \otimes w_{n-k}$. Let $b_{n}=\left(w_{1}^{n}\right)^{*}$ in the dual basis of the basis
of $H^{*}\left(B O ; Z_{2}\right)$ of monomials in the Stiefel-Whitney classes. Then $H_{*}\left(B O ; Z_{2}\right)=$ $Z_{2}\left[b_{1}, \ldots, b_{n}, \ldots\right]$ with coproduct $\Delta\left(b_{n}\right)=\sum_{k=0}^{n} b_{k} \otimes b_{n-k}$. The canonical map $g: B S O \rightarrow B O$ induces the quotient map $Z_{2}\left[w_{1}, \ldots, w_{n}, \ldots\right] \rightarrow$ $Z_{2}\left[w_{1}, \ldots, w_{n}, \ldots\right] /\left(w_{1}\right)$ in Z_{2}-cohomology. Thus we have the same algebraic situation as for $B S U$ with Z_{2}-coefficients. The only difference is that the degrees are halved. Thus g_{*} is a monomorphism and $H_{*}\left(B S O ; Z_{2}\right)$ is a polynomial algebra with one generator in each degree greater than one. From $\S 4$ we know how to pick polynomial generators for $H_{*}\left(B S O ; Z_{2}\right)$ as specific polynomials in $b_{1}, \ldots, b_{n}, \ldots$

Theorem 5.1. In $Z\left[b_{1}, \ldots, b_{n}, \ldots\right]$ we define elements G_{n} and then V_{n} by induction on $n \geqslant 2$ from the following formulas:

$$
\begin{gathered}
G_{2^{i}}=2 b_{2^{j}}+\sum_{i=1}^{2^{s-1}-1} 2 b_{i} b_{2^{s}-i}+b_{2^{-1}}^{2}, \\
G_{2 n+1}=b_{2 n+1}+\sum_{i=1}^{n} b_{i} b_{2 n-i+1}+b_{1} b_{n}^{2} \text { for } n \geqslant 1, \\
G_{2 n}=b_{2 n}+\sum_{i=1}^{n-1} b_{i} b_{2 n-i}+\frac{1}{2}\left(V_{n}+b_{n}^{2}\right) \text { for } n \geqslant 1, \\
V_{2^{s}}=G_{2^{++1}} .
\end{gathered}
$$

Then $V_{n} \equiv b_{n}^{2}$ modulo 2 and $H_{*}\left(B S O ; Z_{2}\right) \simeq \operatorname{Image} g_{*}=Z_{2}\left[G_{2}, \ldots, G_{n}, \ldots\right]$. Q.E.D.

The above formula for $G_{2 n+1}$ was observed by B. Gray [3].

Bibliography

1. J. F. Adams, Primitive elements in the K-theory of BSU, Quart. J. Math. Oxford Ser. (2) 27 (1976), 253-262.
2. Séminaire Henri Cartan, 12ième année: 1959/60 Periodicité des groupes d'homotopie stables des groupes classiques, d'après Bott, Deux fasc., 2ième éd., Ecole Norm. Sup., Secrétariat Math., Paris, 1961.
3. B. Gray, Products in the Atiyah-Hirzebruch spectral sequence and the calculation of MSO*, Trans. Amer. Math. Soc. 260 (1980), 475-483.
4. S. O. Kochman, Primitive generators for algebras, Canad. J. Math. (to appear).

Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6a 5B7

[^0]: Received by the editors January 12, 1981.
 1980 Mathematics Subject Classification. Primary 55R45; Secondary 57 T05.
 Key words and phrases. Polynomial generator, classifying space, classical group, coaction, primitive, Chern class, Stiefel-Whitney class.
 ${ }^{1}$ This research was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

