SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

AN INEQUALITY FOR TRIGONOMETRIC POLYNOMIALS

LAWRENCE A. HARRIS

Abstract

Our purpose is to obtain in an elementary way a sharp estimate on the derivative of a trigonometric polynomial of degree $<n$ at a point θ when the trigonometric polynomial has a known bound at the Chebyshev points and at θ.

Proposition. If T is a trigonometric polynomial of degree $\leqslant n$ and if $\cos n \boldsymbol{n} \neq 0$, then

$$
\begin{equation*}
\left|T^{\prime}(\theta)\right| \leqslant \frac{n}{|\cos n \theta|}\left[|T(\theta)|+\max _{1<k<2 n}\left|T\left(\frac{(2 k-1) \pi}{2 n}\right)\right|\right] . \tag{1}
\end{equation*}
$$

Moreover, equality holds in (1) when $T(\phi)=\sin n \phi-\tan n \theta \cos n \phi$.
Inequality (1) implies a well-known extension of Bernstein's theorem for trigonometric polynomials. (See [1, p. 211] or [4, p. 102].) Indeed, applying (1) with $\theta=0$ and with $T(\phi)$ replaced by $[T(\theta+\phi)-T(\theta-\phi)] / 2$ and observing that $-(2 k-1) \pi /(2 n)$ is 2π less than $(2 l-1) \pi /(2 n)$, where $l=2 n-k+1$, we obtain

$$
\left|T^{\prime}(\theta)\right| \leqslant n \max _{1<k<2 n}\left|T\left(\theta+\frac{(2 k-1) \pi}{2 n}\right)\right| .
$$

Proof. Given θ, let M be the expression in brackets in (1) and put $S(\phi)=$ $T(\theta+\phi)-T(\theta)$. Then S is a trigonometric polynomial of degree $<n$ such that $S(0)=0$ and $\left|S\left(2 \theta_{k}\right)\right| \leqslant M$ for $1 \leqslant k \leqslant 2 n$, where $2 \theta_{k}=(2 k-1) \pi /(2 n)-\theta$. It suffices to show that

$$
\begin{equation*}
\left|S^{\prime}(0)\right| \leqslant n M /|\cos n \theta| . \tag{2}
\end{equation*}
$$

Put $m=2 n$. We first observe that by the Lagrange interpolation formula, if $p(x)=a_{0}+a_{1} x+\cdots+a_{m-1} x^{m-1}$ then

$$
\begin{equation*}
a_{m-1}=\sum_{k=1}^{m} \frac{p\left(x_{k}\right)}{\Pi_{j \neq k}\left(x_{k}-x_{j}\right)}, \tag{3}
\end{equation*}
$$

Received by the editors March 1, 1981.
1980 Mathematics Subject Classification. Primary 26D05, 26D10.
where $x_{k}=\cot \theta_{k}$ for $1 \leqslant k \leqslant m$. In particular, taking $p(x)=\operatorname{Im}(x+i)^{m}$ in (3) and observing that

$$
p\left(x_{k}\right)=\operatorname{Im}\left(e^{i \theta_{k}} / \sin \theta_{k}\right)^{m}=(-1)^{k-1} \csc ^{m} \theta_{k} \cos n \theta
$$

we obtain

$$
\begin{equation*}
\frac{m}{|\cos n \theta|}=\sum_{k=1}^{m} \frac{\csc ^{m} \theta_{k}}{\Pi_{j \neq k}\left|x_{k}-x_{j}\right|} \tag{4}
\end{equation*}
$$

since the sign of $\Pi_{j \neq k}\left(x_{k}-x_{j}\right)$ alternates as k increases. Now by [3, p. 337], we may write $S(2 \phi)=\left(\cos ^{m} \phi\right) q(\tan \phi)$, where q is a polynomial of degree $\leqslant m$. Clearly $q(0)=0$ and $2 S^{\prime}(0)=q^{\prime}(0)$. Letting $p(x)=x^{m} q\left(\frac{1}{x}\right)$, we see that $\left|p\left(x_{k}\right)\right| \leqslant$ $M \csc ^{m} \theta_{k}$ for $1 \leqslant k \leqslant m$ and that (3) holds with $a_{m-1}=q^{\prime}(0)$. Thus (2) follows from (4). (Compare [5].)

A related result is obtained in [2, Theorem 2].

References

1. R. P. Boas, Entire functions, Academic Press, New York, 1954.
2. \qquad , Inequalities for polynomials with a prescribed zero, Studies in Math. Anal. and Related Topics (D. Gilbarg and H. Solomon et al., Eds.), Stanford Univ. Press, Stanford, Calif., 1962.
3. J. G. van der Corput and G. Schaake, Ungleichungen für Polynome und trigonometrische Polynome, Compositio Math. 2 (1935), 321-361.
4. T. J. Rivlin, The Chebyshev polynomials, Wiley, New York, 1974.
5. W. W. Rogosinski, Some elementary inequalities for polynomials, Math. Gaz. 39 (1955), 7-12.

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

