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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and

polished character, for which there is no other outlet.

AN INEQUALITY FOR TRIGONOMETRIC POLYNOMIALS

LAWRENCE A. HARRIS

Abstract. Our purpose is to obtain in an elementary way a sharp estimate on the

derivative of a trigonometric polynomial of degree < n at a point 9 when the

trigonometric polynomial has a known bound at the Chebyshev points and at 9.

Proposition. If T is a trigonometric polynomial of degree < n and if cos nff =£ 0,

then

\T(9)\+    max   \t(^^)\}.
i<*<27i|   V       2n       J\\

Moreover, equality holds in (1) when T(<¡>) = sin «</> — tan nff cos n<¡>.

Inequality (1) implies a well-known extension of Bernstein's theorem for trigono-

metric polynomials. (See [1, p. 211] or [4, p. 102].) Indeed, applying (1) with 0 = 0

and with T(4>) replaced by [T(6 + <p) - T(ff - <f>)]/2 and observing that

-(2k — 1)77/(2«) is 2m less than (21 — l)ir/(2n), where / = 2n — k + 1, we obtain

\T'(ff)\<n   max   \t(s + (2*~ 1)v)\.
\<k<2n\    \ 2n )\

Proof. Given 0, let M be the expression in brackets in (1) and put S(<j>) =

T(0 + <i>) — T(0). Then S is a trigonometric polynomial of degree < n such that

5(0) = 0 and 15(2^)1 < M for 1 < k < 2n, where 20k = (2k - \)ir/(2ri) - 0. It
suffices to show that

(2) IS'(0)| < nM/ |cos n0 \.

Put m = 2n. We first observe that by the Lagrange interpolation formula, if

p(x) = a0 + axx + • • • +am_xxm~l then

(3) üm-x= ^  TT-(x  -xY
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where xk = cot ffk for 1 < k < m. In particular, taking p(x) = Im(x + i)m in (3)

and observing that

p(xk) = Im(e'Vsin 6k)m = (-1)*"1 csc™ ffk cos nff,

we obtain

(4) ^=£   ^
|cos«0|      k=xUj^k\xk - Xj\

since the sign of WJ^k(xk — xj) alternates as k increases. Now by [3, p. 337], we

may write S(2<j>) = (cosm </>)^(tan d>), where q is a polynomial of degree < m.

Clearly q(0) = 0 and 25"(0) = q'(0). Lettingp(x) = xmq(±), we see that \p(xk)\ <

M ese"1 ffk for 1 < k < m and that (3) holds with am_, = ?'(0). Thus (2) follows

from (4). (Compare [5].)

A related result is obtained in [2, Theorem 2].
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