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STRICT LOCAL RINGS

J. HERZOG

Abstract. In this paper we introduce the notion of a strict local ring. A local

Cohen-Macaulay ring (B, m) is called strict if, whenever a local ring (A, n)

specializes by a regular sequence to B, then the associated graded ring gr„(/l) is

Cohen-Macaulay. We show that an artinian graded algebra B is strict if for the

graded cotangent module we have Tx(B/k, B), = 0 for v < -I. Various examples

are considered where this condition holds. In particular, with this method we

reprove a result of J. Sally [6].

The purpose of this paper is to extend results of J. Sally who showed that for a

certain class of local Cohen-Macaulay rings (B, m) the graded ring grm(B) is again

Cohen-Macaulay. A typical result of this type proved by J. Sally is the following

[6]: Let (B, m) be a (/-dimensional local Cohen-Macaulay ring with multiplicity e

and embedding dimension e — d + 1. Then grm(Ä) is Cohen-Macaulay. For the

proof of the theorem one may assume that B/m is infinite. Then there exist

elements x„ . . ., xd E m such that m2 = 0 for the maximal ideal m of B =

B/(xx, . . . , xd). Thus all local rings with fixed embedding dimension equal to

e — d + 1 specalize to the same artinian local ring. Conversely all local rings

(B, m) specializing to (B, m) with m2 = 0 have embedding dimension e + d — 1

and hence have the property that grm(5) is Cohen-Macaulay.

It is thus natural to make the following definition: A local Cohen-Macaulay ring

B is said to be strict if it has the following property: Given a local ring (A, n) and a

regular .¿(-sequence x such that B ä A/(x)A, then gr„(^4) is Cohen-Macaulay.

Although we have formulated this definition in great generality we will restrict

ourselves to studying only the most important case of strict artinian local rings. The

nonartinian case is treated very similarly.

For technical reasons we consider only analytic rc-algebras A:[|A', . . . Xn\]/I,

where k is an infinite field. This is for the questions under consideration not very

restrictive, since one may always assume that the local ring is complete and has

infinite residue class field.

In [3, Theorem 2] we considered already certain classes of strict artinian

algebras. There we showed that B = k[\Xx . . . X„\]/I is strict, if 7 is generated by

forms of degree 2 and no surjection 7/72 -» B exists. An artinian local ring (B, m)

with «j2 = 0 is of this type.

In the theorem we are going to prove here, again the homomorphisms 7/72 —» B

play an essential role. This is not astonishing since the definition of strict includes
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properties of algebras specializing to B. Such algebras however are nonobstructed

deformations of B. The tangent space of the deformation functor of B is given by

T2(B/k, B), which is (I/I2)* = Homs(7/72, B) modulo homomorphisms,  in-

duced by derivations.

To be more precise, the partial derivatives give rise to homomorphisms

9,: I/I2 -» B,      f mod 72 -» (df/BX,) mod 7.

Letting U be the submodule of (7/72)* generated by the a,., the Tx(B/k, B) =

(I/12)*/ U. For more details see [4, 8].

Observe that if 7 is a homogeneous ideal, then (I/I2)* has a natural grading:

<b G (I/I2)* is called homogeneous if, for all homogeneous elements x G 7/72,

<p(x) is again homogeneous and deg <p(x) — deg x is independent of x. In that case

one defines deg (p = deg <p(x) — deg x.

In particular we have deg 3, = -1 for /' = 1, . . . , «. Therefore also Tx(B/k, B)

has a natural grading if B is a graded algebra. If M is any graded fi-module, then

Mv denotes its pth homogeneous part and HM(z) = 2,sz dim* Mpz" the Hilbert

function of M.

Note that (7/72)* = T(B/k, B)v for v < -1.

We are now able to state the main result of the paper.

Theorem 1. Let B be a graded artinian algebra such that Tx(B/k, B)r = 0 for

v < — 1. Then B is strict.

For the proof we will use a result of [3]. In our special case it can be described as

follows: Let B = k[\Xx . . . X„\]/I be a graded artinian algebra with 7 =

(7*i> • • • ,fk) and all / homogeneous. Suppose A specializes to B, i.e. B aa A/(t)A

where / = /,,..., tm is a regular A -sequence. Then A can be written as

A^k[\Xx,...,Xn,Tx,...,Tm\]/J

where t¡ = T¡ mod J for i = 1, . . ., m. The sequence / is called super-regular if the

sequence t* = t*, . . . , t* of initial forms is again regular. In that case one has of

course that gr„(A) is Cohen-Macaulay and grn(A)/(t*)grn(A) s* grm(B).

Theorem 2 [2, Theorem 1]. / is super-regular if and only if there exists F¡ E J such

that, for i = 1, . . . , k, / = F¡ mod(Tx, . . . , TJ and deg/ = deg 7).

Proof of Theorem 1. Let B = k[\Xx,.. ., X„\]/I with 7 = (/„.. . ,/*) and all/

homogeneous. Suppose A specializes to B. As in the discussions above we write

A ^ AJI*, . . . X„, Tx, . . ., Tm\]/J with J = (Fx, . . ., Fk) and we suppose that

/ = /,,..., tm is a regular sequence with 5 =ü /l/(í)yl, where r, = 7) mod 7.

We have

F¡ = ^fj^T',       fj»Ek[\Xx,...,Xn\]
V

and/(0) = / for i = 1, . . ., k. Here p denotes a multi-index.

Let 7]= 2„/w7"' (1 <<<£), where g is the 7-residue of an element g G

fcflA',, . . ., X„\]. We are going to show that deg F¡ > deg/ for i = 1, . . . , A:. Then,

of course, we can modify the F¡ such that deg F¡ = deg/ for i » 1,..., k.

Applying Theorem 2 we see that B is strict.
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We will use the following notation: UFE k[\Xx, . . . , Xn, Tx, . . . , TJ] with

F = S,/**!*/» G k[\Xx, ..., Xn\], then for q > 0

f<l) =   V   A") j1"

denotes the truncated series,  where  |»»| < q means  that "2Ti_xv¡ <q for v =

("i. •••»"„)• _

Assume now that deg F¡ < deg/ for some i = 1, . . . , k. After renumbering we

may even assume that for some/? > 0 we have

(.) deg "f"W > deg/   for i - 1,.... k   and deg 7\ (p+1) < deg/,.

Since A: is infinite we may choose an automorphism

*: k[\Xx, ...,X„,TX,...,TJ]^ k[\Xx, . . . , Xm,Tx, . . . ,TJ]

which is the identity on k[\Xx, ..., Xn\] and such that for <&(Ffp+x>) = S„ ^T" we

have deg gO>+>>°- • • • • °)tp+' < deg/. We could take for instance the automorphism

$ defined by 4>(r,) = a, 7,, $(7;) = a^T, + T¡ (1 < / < «i) with a, G Â: \ {0}

suitably chosen.

After the application of such an automorphism $ and after reduction modulo

the new variables ®(T2), . . . , <&(Tn), we may assume that we are dealing only with

one variable T. Hence A = k[\Xx, . . ., Xn, T\]/(FX, . . . , Fk), t = Tmod 7 is a

regular element of A and B = A/tA, the assumptions on the F¡ being as before in

(*)•
Next we may modify the 7) such that all the homogeneous components of the/^

belonging to 7 are zero for v ¥= 0.

We then obtain

(**) deg Fjp) = deg/   for i = 1, . . . , k   and    deg 7^+1) < deg/,.

Since t is a regular element of A, the homomorphisms

^q:k[T]/T"^A/t9A,       Tmod T"-► t mod f

are flat for all q. It is clear that <px: k->A/tA = B is just the structure map of B

and that <j>q+x 0 k[T]/Tq = <bg for all q.

Consequently each relation (/•,) = (r„ ...,/•„) of (/,, ...,/„) admits a lifting

(ä/9)) of order ç. This means that there exist polynomials

*(«> = ,f> + r\X)T + ■ • ■ + /f»>r«

with /*> G k[\Xx, ..., X„\], /f> = /•,. and 2?_, ltf«>/?«» = 0 mod T"+x.
Moreover each lifting (Ä,(?)) of order q can be hfted further to (Rf9+X)), where

^(9+D = ^(9) + r(?+i)r(9+i); r(9+D G k[\Xl,..., Xn\] and 2*_, R^+x^+x) =

0 mod r?+2.

These are easy facts on flat modules and can be found for instance in [1, §3].

Now let (/-,) be a homogeneous relation of (/,,.. . ,/„). Then deg r, + deg/ does

not depend on i. We put d = deg r, + deg/.

We claim that for/» as in (**) we can find a lifting (R¡-py) of (a-,) of order/» such

that deg Jtw = deg r, for i = 1, . . ., A. In fact, let (R,<p)) be any lifting of (#>) of



168 J. HERZOG

order/». We proceed by induction and may assume that we have already

degR?-» =degr,..

Since the coefficient of Tp in 2?_, R<p)F^p) must be zero, we obtain an equation

2 12 r('>/p,-'> ) + 2 *W5 = o.
■ i \ o-o /     1=1

Denoting by (F)¡ the /th homogeneous component of a series we find that

for / < d - p.£**F
We put if« = S/xjeg,;-/'?'0)/ and R¡p) = A,«'-1) + r^». Then (7*,.(*>) is the

relation we wanted. Next let (Rj-p+xy) be a lifting of (R^p)), where deg Ef*1) = deg r¡

and Rip+» = /tf*> + rfp+X)Tp+x for i = 1, . . . , k.
Again we have

2 f 2 r<¡»f¡p+x-A + 2 ^+1)/ + 2 ^+1) = o.

We also have

deg 2Í 2 ^ß»+x-A>d- (p+l)

and  by   assumption   (**)   degf¡p+X)  < deg/, — (p + 1).   Let   X = deg r, +

degfxp+x\ Then X < d - (/» + 1) and

f 2 #+% + 2 VT» ) =o.

Letting X¡ = X — deg r¡ and g, = (/tp+1\, then g, ^ 0 and hence g, G 7 but

2*_, /•/gf G 7. The \ do not depend on the particular chosen relation (/-,). Thus

<f>: I/I2 -> B,      / mod 72 h^ g,. mod 7

is a homomorphism ^ 0 with deg <b = degg, — deg/, < -(/» + 1) < -1. This

contradicts our assumption that Tx(B/k, B)v = 0 for v < -1.

The referee of this paper indicated to the author a proof of this theorem in which

he does not use any reduction to the case of one variable T. The advantage of his

proof is that no assumptions on k are necessary.

The following result, which provides a large class of strict algebras, was obtained

by the author together with D. Eisenbud.

Proposition 1. Let B = k[\Xx, . . . , Xn\]/(fx, . . . ,fk) be an artinian algebra with

deg / = d for i = 1, . . ., k, where n, d > 2. If the module of relations is generated

by homogeneous relations (r¡) with deg r¡ = 1 for i = 1, . . ., k, then Tx(B/k, B)p =

Ofor v < -1.

Proof. We put P = k[\Xx, . . . , Xn\]. I — (/„... ,fd) admits a homogeneous

presentation P x(-d — 1) -» Pk(-d) -+ I -*0. Here M(d) denotes as usual the shift

of the graded module M by d, i.e. M(d)n = Md+n. Dualizing with respect to P and
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with respect to B = P/1 we obtain for all integers v a commutative diagram:

0 -> Hom(7,P)„ -> /*, - />J+1+,

«ol "ll «2vL

0 -» Hom(7,i?)„ -h. £*+r -* Äj+1+r

It follows that ax,a2 are isomorphisms for p < — 1, hence also Oq.

Thus for v < -1 we get

HomB(7/72, B), = HomP(/, 5), = HomP(I, P)v = HomP(7, 7)„ = 0.

Here we also used that grade 7 > 2.

We give two examples:

(a) Let B = k[\Xx, . . . , Xn\]/(XX, . .., Xn)d with « > 2. It is well known and

easy to check that (Xx, . . ., Xn)d is generated by the minors of the d X (d + «)-

matrix

Xx,      X2,      ..., X„,   0, ...     0

0,        Xx ...,     X„

I I
\ /

0,       ...        0,   AT,       ...       A"

and that the generating relations of these minors are just the rows of this matrix.

Hence by Proposition 1 and Theorem 1, B is strict.

(b) Let B = k[\Xx, ..., Xn\]/(fx, ...,fk) with « > 3 and deg/ = d > 1 for
/' = 1, . . . , k. Assume further that B is an artinian Gorenstein ring, that o gener-

ates the socle of B and that deg o = 2d — 2. In [7] P. Schenzel calls Gorenstein

rings of this type extremal. In fact they are extremal in the sense that in general one

only has the inequality deg o > 2d — 2. P. Schenzel points out that extremal

Gorenstein rings with given d occur as rings associated to certain polytops. For

details see also [9]. P. Schenzel also proves a structure theorem (Theorem B) on the

resolution of extremal Gorenstein rings. For the convenience of the reader we

prove here what we need. Let

0^Fn-^Fn_x-^->Fx^F0^0

be a minimal homogeneous P-resolution of B, P = k[\Xx, . . . , Xn\] as before. Since

B is a Gorenstein ring the resolution is symmetric and in particular Fn = P(-dn) is

a free module of rank 1. Say F¡ = ©^, P[-d0]; then dXJ = d for y = 1, . . ., ßx

and again by symmetry i/„_, ■ = d„ — d for y = 1, . . . , ßn_,.

Since the resolution is minimal we have the inequalities d¡.: > d + i — 1 for

2 </'<«- 1. It follows that d„ > 2d + (« — 2). Calculating Hubert functions it

is easy to see that deg o = d„ — n; hence deg o > 2d — 2. Equality holds if and

only if dy — d + i — 1 for 2 < 0 < « — 1. In particular the module of relations of

7 is generated by linear relations.

The two above examples turn out to be special cases of a theorem due to D.

Eisenbud and A. Iarrobino, which was communicated to the author by D. Eisen-

bud.
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Proposition 2. Let A = k[\Xx, . . ., Xn\], H the Hilbert function ofA,B = A/I,

I generated by forms of degree > d. Suppose that the socle of A has p¡ generators of

degree i for each i, and that 2, p¡H(i — d) < H(d). Then equality holds, all the

generators of I are of degree d + 1 and the resolution is linear (except in the first and

last term).

We now reformulate slightly the condition Tx(B/k, B)v = 0 for v < -1 in terms

of the canonical module KB of B. Again we assume that B = k[\Xx, . . . , X„\]/I is

an artinian graded algebra. Let o E KB generate the 1-dimensional socle of KB. KB

is in a natural way a graded 5-module with deg o = 0 and the canonical isomor-

phism

HomB(7/72, B) » Homs(7 0P KB, KB)

is an isomorphism of graded 5-modules. Hence for the Hilbert functions we have

the equality H(1/I*y,(z) = H¡SiKb(z~x). It follows

Proposition 3. Tl(B/k, B\ = Ofor v < -1 if and only if

(I 0 KB)„ = 0   forv>l.

Corollary 1. let B be a Gorenstein ring. Then Tx(B/k, B\ = 0 for v < -1 if

and only if I2 E (Xx, . . . , Xn)c+2, where c is the degree of the socle of B.

Proof. In the Gorenstein case KB = B(c). Thus Tx(B/k, B), - 0 for v < -1 if

and only if (7/72)c+„ = 0 for v > 1. This is equivalent to saying that Ic+r = I2+v

for v > 1. Since 7c + „ = (mB)c+r for v > 1, the assertion follows.

Corollary 2. Let B be an extremal Gorenstein ring (as in Example (b)); then

I2 = (XX,...,X„)2*,

where g is the degree of the forms generating I.

Proof. Obviously 72 E (Xx, . . . , X„)2g. Since 2g = c + 2, the other inclusion

follows from Corollary 1.

In order to state the following result we have to recall the notion of linkage

studied by C. Peskine and L. Szpiro in [5]. The technique of linkage is a powerful

tool to produce examples for whatever. Here we discuss only a special case of

linkage.

Let B¡ = k[\Xx, . . ., Xn\]/Ij, i = 1, 2 be two artinian graded algebras. B2 is said

to be linked to Bx with respect to a regular sequence / = /„ . . . ,/, of forms if

/ E 7, n 72 and 72 = (/): 7,. In this case one also has 7, = (/): 72. Thus linkage is

a symmetric relation.

Proposition 4. Let Bx = k[\Xx, . . ., X„\]/Ix and B2 = k[\Xx, . . . , X„\]/I2 be

linked with respect to a regular sequence f of forms of degree d. Then the following

holds:
(a)

dim* T\Bx/k, £,)„ - dim* Tx(B2/k, B2)r

= dimk(Bx)nid_X)_d_y - dimk(B2)nid_X)_d_v   for v < -1.
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(b) dimkTx(Bx/k, Bx)v = dimkTx(B2/k, B^for v < -1, if and only ifdimk(Bx\

+ dim^*,),^.,,., = dim*(A:[|^„ . . . , Xn\]/(f))vfor v > (n - l)d - n + 2.

(c) If(Bx\ = Ofor v > (n - l)d - n + 2 and (Bx)y = k[\Xx,..., Xn\]vfor v < d

— 2, then

dimkTx(Bx/k, Bx), = dimkT\B2/k, B2\

for v < -1.

Of course one could also consider the case where not all the/ in the linkage have

the same degree. The proof for this more general case is the same, but obviously

the resulting formulas will be even more technical.

Before proving the proposition we consider an explicit example. Let 7, =

(Xx, ...,X„)andf= Xf, . . . , X2. Then Bx = k and d = 2. Trivially the condi-

tions (c) are satisfied. Furthermore it is easy to see that (/): 7, = (X2, . . . , X2,

Xx- ... -Xn). Thus B2 = k[\Xx, ..., Xn\]/(X2, ...,X2, Xx- ... -Xn) is strict,

since Bx = k is strict. The example shows that for a strict algebra not necessarily all

generators of the defining ideal must be of the same degree.

Proof of Proposition 4. The proof uses essentially an idea due to R. O.

Buchweitz communicated to the author (see [2]). We write Bx = P/Ix, B2 = P/I2

and B = P/(f). Since KBi(-n(d - 1)) ~ 7,/(/) we obtain the following exact

sequence of graded P-modules:

0^KB2(-n(d~ l))^B^Bx^0.

Tensorizing this sequence with B2 over P we obtain the long exact sequence

-*    Tor2(5, B2)    ^    Tor2(7?„ BJ    -*   Torx(KB2(-n(d - 1)), BJ

Totx(B, BJ    %    Tor,(fi„ BJ

Exchanging the role of Bx and B2 we obtain a similar exact sequence

Tor2(5, Bx)    %    Tot2(B2, Bx)    -+    Toix(KBi(-n(d - 1)), Bx)

ß,
-h>   Tor,CB, Bx)    -+    Totx(B2,Bx)   ->

The crucial point is now that Im a, = Im /?, for /= 1, 2, .... In fact, consider the

following commutative diagram:

Tor,(5, Bx) ^ Tor,.(2?2, Bx)

r,(£, B) =C_^ '*
Tov^B, BJ -» Tor,(fi„ BJ

Using the Koszul complex to compute Tor,(i>\ B), Tor¡(B, Bx) and Tot¿(B, B^ one

sees immediately that a, and t, are surjective. Hence the conclusion.

The above sequences now yield

dim* Toix(KBi(-n(d - 1)), B2)p - dim* Tor,(B, B2)y

= dim* Torx(KB>(-n(d ~ 0), *,), - dim* Tor,(fi, Bx)r.
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Observing that

Torx(KB¡(-n(d ~ 0), B,) =* 7,- 0 KB(-n(d - 1)),

Tor,(fi, B,) » *,(-</)    and   H{I/l^z) = T/^z"1),

the assertion (a) follows easily.

(b) follows from (a) taking into account that the Hilbert function of B2 can be

derived from the Hilbert function of Bx. In fact, from the exact sequence 0-»

KBl(-n(d - 1)) -> 5 -> 5, ^> 0 we obtain

HBi(z) + Z-V- 1)HKb2(z) = Hb(z).

On the other hand HK (z) = HB (z~x). Finally (c) is a simple consequence of (b).

It would be interesting to describe all graded artinian algebras B for which

Tx(B/k, B\ = 0 for v < -1. If for instance edim B = 2, then it is easy to see that

Tx(B/k, B)p — 0 for v < -I if and only if all defining relations are of the same

degree and B is not a complete intersection.

It seems to be even more complicated to describe all strict algebras. Theorem 1

gives only a sufficient condition for an algebra to be strict. The easiest example is

k[e] = k[X]/(X2). It is obviously strict; however Tx(k[e]/k, k[e])_2 =¡¡= 0.
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