ON THE DIVISIBLE PART OF THE BRAUER GROUP OF A FIELD

TILMANN WÜRFEL

ABSTRACT. For a field k and an odd prime $p \neq \text{char}(k)$ such that the p-primary component $B(k)_{(p)}$ of the Brauer group B(k) of k is not zero there exists a finite extension k/k such that $B(k)_{(p)}$ contains a nontrivial divisible subgroup.

Let k be an arbitrary field, $p \neq \operatorname{char}(k)$ a prime, and $B(k)_{(p)}$ the p-primary component of the Brauer group B(k) of k. Brumer and Rosen [1] conjecture that either $2B(k)_{(p)} = 0$ or $B(k)_{(p)}$ contains a nontrivial divisible subgroup. As an easy consequence of our investigation of the relative Brauer group of a maximal p-extension [3], we are able to show the conjecture is true modulo a finite extension of k. For the facts about profinite groups used here, we refer the reader to [2].

THEOREM. Let k be a field and $p \neq \operatorname{char}(k)$ a prime. If $2B(k)_{(p)}$ is not zero, then there exists a finite separable extension \tilde{k}/k such that $B(\tilde{k})_{(p)}$ contains a nontrivial divisible subgroup and the maximal power of p dividing $[\tilde{k}:k]$ is at most 2.

We need a simple lemma for the proof. For V a profinite group let $V_{[p]}$ denote the smallest normal subgroup such that $V/V_{[p]}$ is a pro-p-group. Then $V_{[p]} \leq W_{[p]}$ for $V \leq W$.

LEMMA. Let G be a profinite group, S a pro-p-subgroup, and $^{\circ}V$ the set of open subgroups of G containing S. Then $S = \lim_{V \in ^{\circ}V} V/V_{[p]}$.

PROOF. Consider the exact sequence $1 \to V_{[p]} \to V \to V/V_{[p]} \to 1$ for $V \in \mathcal{V}$. Since $\bigcap_{V \in \mathcal{V}} V = S$ and the inverse limit is exact for profinite groups, we have only to show that $\bigcap_{V \in \mathcal{V}} V_{[p]} = 1$. Let U be an open normal subgroup of G. Then V = SU is in \mathcal{V} and $V_{[p]} \leq U$ because V/U is pro-P. So $\bigcap_{V \in \mathcal{V}} V_{[P]}$ is contained in the intersection of all open normal subgroups of G which is trivial.

PROOF OF THE THEOREM. Let k_s be the separable closure of k, with Galois group G over k, μ_{p^n} the group of p^n th roots of unity in k_s , and $\mu = \bigcup_{n=1,2,\ldots} \mu_{p^n}$. Denote by k_0 the field $k(\mu_p)$ if $p \neq 2$, and $k(\mu_4)$ if p = 2. Since its degree $[k_0 : k]$ divides p-1 or 2, respectively, we have $B(k_0)_{(p)} \neq 0$. Hence it suffices to consider the situation $k = k_0$ and $B(k)_{(p)} \neq 0$ and to show there exists a finite extension \tilde{k} of k in k_s , of degree $[\tilde{k} : k]$ prime to p, such that $B(\tilde{k})_{(p)}$ contains a nontrivial divisible subgroup.

Received by the editors April 21, 1981 and, in revised form, June 25, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 12G05.

Key words and phrases. Brauer group of a field, profinite group, divisible group.

By [1, Lemma 2] we have $B(k)_{(p)} = H^2(G, \mu)$. Let S be a Sylow p-subgroup of G. Since $cd_p(G) = cd(S)$, S cannot be a free pro-p-group and hence, by the lemma, there exists an open subgroup V of G containing S, such that the group $V/V_{[p]}$ is not pro-p-free. Let \tilde{k} and K be the subfields of k_s left fixed by the groups V and $V_{[p]}$, respectively. Then $[\tilde{k}:k]=[G:V]$ is prime to p and \tilde{k} contains the pth or fourth roots of unity. The field K is the maximal p-extension of \tilde{k} and the Galois group $Gal(K/\tilde{k})$ is $V/V_{[p]}$, which is not pro-p-free. Hence, by [3, Satz 3(a)], the part $B(K/\tilde{k})$ of the Brauer group $B(\tilde{k})$ split by K contains a nontrivial divisible (p-primary) subgroup.

REFERENCES

- 1. A. Brumer and M. Rosen, On the size of the Brauer group, Proc. Amer. Math. Soc. 19 (1968), 707-711.
- 2. J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Math., vol. 5, 4th ed., Springer-Verlag, Berlin, Heidelberg and New York, 1973.
- 3. T. Würfel, Ein Freiheitskriterium für pro-p-Gruppen mit Anwendung auf die Struktur der Brauer-Gruppe, Math. Z. 172 (1980), 81–88.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT, THERESIENSTRASSE 39, D-8000 MÜNCHEN 2, FEDERAL REPUBLIC OF GERMANY