TWO APPLICATIONS OF ASYMPTOTIC PRIME DIVISORS

STEPHEN MCADAM¹

ABSTRACT. Some recent interest has focused on the set of prime divisors of large powers of an ideal in a Noetherian ring. This note presents two results whose proofs appear to depend on knowledge of such asymptotic prime divisors.

Introduction. Let I be an ideal in a Noetherian ring R. It was recently shown that, for all large n, $Ass(R/I^n) = Ass(R/I^{n+1})$ [1]. Many interesting ideas have ensued. For example, we prove the following two results.

THEOREM A. Let \overline{R} be the integral closure of the Noetherian domain R. If J is a finitely generated ideal of \overline{R} , then only finitely many primes of \overline{R} are minimal over J.

THEOREM B. Let $R \subseteq T$ be an integral extension of domains with R Noetherian. If Q is prime in T and height Q = n, then grade $Q \cap R \le n$. Furthermore, if grade $Q \cap R = n$, then $Q \cap R$ is a prime divisor of any ideal generated by a maximal R-sequence from $Q \cap R$.

Needing only a fraction of the existing knowledge of asymptotic prime divisors, we present it, rather than just giving references.

LEMMA [5]. Let I be an ideal in a Noetherian ring R. The set $\bigcup Ass(R/I^n)$, $n = 1, 2, \ldots$, is finite.

PROOF. Let t be an indeterminate and let $A = R[t^{-1}, It]$, the Rees ring. Now $t^{-n}A \cap R = I^n$, and if $P \in \operatorname{Ass}(R/I^n)$ one easily finds $Q \in \operatorname{Ass}(A/t^{-n}A)$ with $O \cap R = P$. As t^{-1} is regular, $O \in \operatorname{Ass}(A/t^{-1}A)$, which is a finite set.

LEMMA [3]. Let $R \subset T$ be an integral extension of domains, R Noetherian. Let I be an ideal of R and let $Q \in \operatorname{Spec} T$ with Q minimal over IT. Then $P = Q \cap R \in \cup \operatorname{Ass}(R/I^n)$.

PROOF. We may assume R is local at P. We also assume T = R[u] with $u \in \overline{R}$. To do this, by going up assume $T = \overline{T}$, and then by going down assume $T = \overline{R}$. Finally, choose $u \in Q$ but in no other prime of \overline{R} lying over P. Thus only Q lies over $Q \cap R[u]$, and so we assume T = R[u].

Received by the editors March 16, 1981 and, in revised form, May 19, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 13E05.

Key words and phrases. Noetherian domain, prime divisor, asymptotic prime divisor, integral extension.

¹Partially supported by the National Science Foundation.

Pick $0 \neq b \in R$ with $bT \subseteq R$, and n large enough that $b \notin Q^n$. As Q is minimal over I^nT , there is a k > 0 and an $s \in T - Q$ with $sQ^k \subseteq I^nT$. Thus $bsP^k \subseteq bsQ^k \subseteq bsI^nT \subseteq I^n$, since $bT \subseteq R$. However $bs \in R - I^n$, since if $bs \in I^n \subseteq Q^n$, then since Q^n is primary to the maximal Q, $b \in Q^n$ a contradiction. Therefore P^k consists of zero divisors modulo I^n , and being maximal, $P \in Ass(R/I^n)$.

PROOF OF THEOREM A. Let $J = (a_1, \ldots, a_m)\overline{R}$. Let $R_1 = R[a_1, \ldots, a_m]$ and $I = (a_1, \ldots, a_m)R_1$. Since $J = I\overline{R}$, if $Q \in \operatorname{Spec} \overline{R}$ and Q is minimal over J, then $Q \cap R \in \bigcup \operatorname{Ass}(R_1/I^nR_1)$. The first lemma, and the fact that only finitely many primes of \overline{R} lie over any prime of R_1 , give the result.

PROOF OF THEOREM B. Induct on n. If n = 1, pick $0 \neq a \in Q \cap R$. Thus Q is minimal over aT, so $Q \cap R \in \operatorname{Ass}(R/a^mR)$, some m. Therefore $Q \cap R \in \operatorname{Ass}(R/aR)$. For n > 1, suppose grade $Q \cap R > n - 1$ and let a_1, \ldots, a_n be an R-sequence from $Q \cap R$. By induction, we see that height $(a_1, \ldots, a_n)T \geqslant n$. Thus Q is minimal over $(a_1, \ldots, a_n)T$ so that $Q \cap R$ is a prime divisor of $(a_1R, \ldots, a_nR)^m$, some m. As a_1, \ldots, a_n is an R-sequence, $Q \cap R$ is also a prime divisor of $(a_1, \ldots, a_n)R$ [2, §3.1, Exercise 13].

Theorem B extends [4, 33.11].

ADDED IN PROOF. A recently discovered sophisticated argument shows that in Theorem B, height Q = n can be weakened to little height Q = n.

REFERENCES

- 1. M. Brodmann, Asymptotic stability of $Ass(R/I^n)$, Proc. Amer. Math. Soc. (to appear).
- 2. I. Kaplansky, Commutative rings, Univ. of Chicago Press, Chicago, Ill., 1974.
- 3. S. McAdam, Asymptotic prime divisors and going down, Pacific J. Math. 91 (1980), 179-186.
- 4. M. Nagata, Local rings, Interscience, New York, 1962.
- 5. L. J. Ratliff, Jr., On prime divisors of In, n large, Michigan Math. J. 23 (1976), 337-352.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712