
proceedings of the
american mathematical society
Volume 84, Number 2, February 1982

TWO APPLICATIONS OF ASYMPTOTIC PRIME DD/ISORS

STEPHEN MCADAM1

Abstract. Some recent interest has focused on the set of prime divisors of large

powers of an ideal in a Noetherian ring. This note presents two results whose

proofs appear to depend on knowledge of such asymptotic prime divisors.

Introduction. Let 7 be an ideal in a Noetherian ring R. It was recently shown

that, for all large «, Ass(Ä/7") = Ass(Ä/7"+1) [1]. Many interesting ideas have

ensued. For example, we prove the following two results.

Theorem A. Let R be the integral closure of the Noetherian domain R. If J is a

finitely generated ideal of R, then only finitely many primes of R are minimal over J.

Theorem B. Let R E T be an integral extension of domains with R Noetherian. If

Q is prime in T and height Q = n, then grade Q n R < n. Furthermore, if grade

Q n R = «, then Q n R is a prime divisor of any ideal generated by a maximal

R-sequence from Q n R.

Needing only a fraction of the existing knowledge of asymptotic prime divisors,

we present it, rather than just giving references.

Lemma [5]. Let I be an ideal in a Noetherian ring R. The set U Ass(-R/7"),

n = 1, 2, ..., is finite.

Proof. Let t be an indeterminate and let A = R[t~x, It], the Rees ring. Now

r"A n R = I", and if P E Ass(Ä/7") one easily finds Q E Ass(A/t~"A) with

Q n R = P. As t~x is regular, Q G AssL4/rU), which is a finite set.

Lemma [3]. Let R c T be an integral extension of domains, R Noetherian. Let I be

an ideal of R and let Q E Spec T with Q minimal over IT. Then P = Q n R E

U Ass(Ä/7").

Proof. We may assume R is local at P. We also assume T = R[u] with u G R.

To do this, by going up assume T = T, and then by going down assume T = R.

Finally, choose u E Q but in no other prime of R lying over P. Thus only Q hes

over Q n R[u], and so we assume T = R[u].
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Pick 0¥=b E R with bT E R, and « large enough that b & Q". As Q is minimal

over I"T, there is a k > 0 and axis E T - Q with jg* Ç 7T. Thus bsPk E bsQk

E bsI"T E I", since ¿>7" E R. However bs G R - I", since if bs G I" E Q", then

since Q" is primary to the maximal Q, b E Q" a contradiction. Therefore Pk

consists of zero divisors modulo 7", and being maximal, P E Ass(Ä/7").

Proof of Theorem A. Let J = (a,,.. ., am)R. Let Rx = R[ax,.. ., am] and

7 = (a„ . . ., am)Rx. Since 7 = 7R, if Q G Spec Ä and Q is minimal over J, then

gni £ U Ass(Rx/ I"RX). The first lemma, and the fact that only finitely many

primes of R lie over any prime of Rx, give the result.

Proof of Theorem B. Induct on «. If « = 1, pick 0¥=a E Q n R. Thus Q is

minimal over aT, so Q n R E Ass(R/amR), some m. Therefore Q n R E

Ass(R/aR). For « > 1, suppose grade Q C\ R > n — I and let ax, . . . ,a„ be an

A-séquence from Q n Ä. By induction, we see that height(a„ .. . , a„)T > n. Thus

Q is minimal over (ax, . . . , a„)T so that Q n R is a prime divisor of

(axR, . . . , a„R)m, some m. As ax, . . . , an is an R -sequence, g n Äis also a prime

divisor of (a,, . . . , a„)R [2, §3.1, Exercise 13].

Theorem B extends [4, 33.11].

Added in proof. A recently discovered sophisticated argument shows that in

Theorem B, height Q = « can be weakened to httle height Q = n.

References

1. M. Brodmann, Asymptotic stability of Ass(/?//"), Proc. Amer. Math. Soc. (to appear).

2.1. Kaplansky, Commutative rings, Univ. of Chicago Press, Chicago, 111., 1974.

3. S. McAdam, Asymptotic prime divisors and going down, Pacific J. Math. 91 (1980), 179-186.

4. M. Nagata, Local rings, Interscience, New York, 1962.

5. L. J. Ratliff, Jr., On prime divisors of I", n large, Michigan Math. J. 23 (1976), 337-352.

Department of Mathematics, University of Texas, Austin, Texas 78712


