
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 84, Number 2, February 1982

A TAUBERIAN THEOREM

FOR STRONG ABEL SUMMABILITY TYPE

INDULATA SUKLA

Abstract. In the present paper the author has defined a new method of strong

Abel summability type [A, \}m and obtained a necessary and sufficient type of

Tauberian conditions for ¿Zan to be summable [R, A, k]m, whenever it is summable

{A, A}m. This result is analogous to one result of Flett [4].

1. Let {X„} be an increasing sequence of nonnegative numbers tending to oo with

n. The series 2a„ is said to be strongly summable [R, X, k]m, k > 1 — ̂ ¡, to the

sum s [5, 8], if

(1.1) i"\c\~\t) ~s\mdt = o(x),   asx^oo,

where c£(x) = 2K<x(l - \/x)kav.

It is noteworthy to remark that in [5], Glatfeld uses a different notation.

We also write

A*(*) *  2 (x - \)ka„,       Bk(x) -  2 (x - K)\an.
K<x K<x

It is natural to define the series 2a„ as summable [A, \}m (m > 1) if the series

<KX) = S™=0 fl» expi-^n*) converges for all x > 0 and

(1.2,       riM-ç.-^.i-i—V asÄ^o.
JR    <\-e-xf \\-e-R)

For in the special case \ = n this reduces after an obvious change of variable, to

the definition of {A }m given by Flett in [4]. However we can put this definition in a

simpler form. In fact, (1.2) is equivalent to the assertions that as R —> 0 + ,

r°° k>(*) - s\m J      i \\

To prove this, we first note that, as Ä-»0 + , 1/(1 — e~R)~R- so that

o(l/(l — e~R)) on the right of (1.2) can be replaced by o(j). Next, the assumption

that 2~_0 a„ exp(—\x) converges for x > 0 implies that the sum is bounded for

x > 1 (see [6]). Hence the integrals

JX      (1  _ e-xf J\ x2
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converge. Thus, since these integrals do exist, they are constants and hence

certainly o(^), so that it makes no difference to the validity of either (1.2) or (1.3) if

we replace the integrals from R to oo by integrals from R to 1. But, for 0 < x < 1,

a/x2 < e~x/ (1 - e~x)2 < ß/x2,

where a, ß are strictly positive absolute constants. Hence, for 0 < R < 1,

1 \Kx) - s\m       f'MjO-jr^ ^, a r i W¿) - *r
dx,

JR x2 Jr (1 - e~x)2 JR x¿

so that if either one of the integrals occurring in (1.4) is o(\) then so is the other

proving the result.

Remark. The equivalent definition (1.3) and the above proof is due to B.

Kuttner.

Hyslop and Boyd [1] have shown that for \ = n, [R, X, k]m is equivalent to

[c, k\m.

Throughout we denote by M a positive constant, which may be different at each

occurrence.

2. Introduction. Flett [3] has established that S^.Jt*!"1 = o(r) is a Tauberian

condition for 2a„ E {A}m to imply 2a„ E [c, k]m, m > 1 and k > 0. The object

of the present paper is to obtain an analogue of Flett's Theorem [3] and get a

necessary and sufficient type of Tauberian condition for 2a„ E {A, \}m to imply

2a„ E [R, X, k]m.

3. We establish the following.

Theorem. If m > \ and k > 1 — ¿ and (i) 2"_0 a„ is summable {A, X}m, then a

necessary and sufficient condition for 2"=0 an to be summable [R, X, k]m is

Bk~\x) "
(3.1) r

Jft xk
dx = o(X),   as X -* oo.

4. We require the following lemmas.

Lemma 1 [2]. If <¡>(x) = 2^=0 ancxp(-Xnx) converges for x > 0, then for k > 0, we

have

^-wtdC^'^""-
Lemma 2. For 2a„ to be summable [R, X, k]m it is necessary and sufficient that (i)

2a„ is summable [R, X, k + \]m and (ii) (3.1) holds.

Proof. Let m > 1. Suppose first that (i) and (ii) are satisfied. We have [7]

(4.1) x~k+xAk-x(x) = x~kA^(x) + x-kB£-\x).

Hence

Bk~\x) "
[X\c^-\x)\m dx <M (X\c£(x)\m dx + m[X

Jo Jo Jo xk
dx
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Since [R, X, k]m => [R, X, k + \]m  [7], (i) is necessary.  Again by (4.1), (3.1)

follows. Hence (3.1) is necessary.

Lemma 3.1fm> I, fix) = fix, t) andg(x) = g(x, t) then

(/dt j\fix) + s(X)rdx}1'* < (|dt f\fix)r<¿c)1/m

+ (/ dt ¡\g(xTdx^/m.

The result follows by double applications of Minkowski's inequality.

Lemma 4.1fk > -1, then

uniformly for all t > 0 and u > 0.

Proof. If k is any real constant, then uniformly in y > 1,

(4.2) (°°wke-w aw = 0(yke~y).
Jy

This may be proved by observing that for sufficiently large v, say y > Y,

r°°    d r°°
yke-y = -j     —(wke-w)dw>cj    wke~w dw,

where c is a strictly positive constant. But for fixed Y, (4.2) certainly holds in the

range 1 < y < Y, since, in that range, /" wke~w dw and yke~y each lies between

two (strictly) positive constants. By an obvious change of variables, we deduce that,

uniformly in tu > 1,

(4.3) f°°vke-'v dv = o(^-j^).

Let us now suppose k > -1. Then

1  ke~"> dv <  Cvke-V dv = Ii*±Jl
/»OO /-OO

/    vke~'v dv <  /    v

If tu < 1 then 1 < e ■ e~'u and hence, uniformly in tu < 1

(4.4) J    v-ke-'v dv =°m
Since (4.3) holds for tu > 1 and (4.4) for tu < 1 we have uniformly for all / > 0,

Lemma 5. IfO < m¡i < 1, then (3.1) implies

X*•'n

í¿c = o(A'1-m'1).



188 INDULATA SUKLA

Proof. It follows by integration by parts.

00.

5. Proof of the theorem. Let us suppose without loss of generality s = 0. The

necessity part follows from Lemma 2. For sufficiency, it is required to prove, by

Lemma 3 that (1.3) with s = 0 and (3.1) together imply

(5.1) [X\c\(x)\m dx = o(X),   asX

We take throughout R = j¡ so that as R -» 0 + , we have

1

e
[X\c£(x)\m dx < f°° dt [X\c£(x)\mxe-,x dx.

Hence by Lemma 3, if m > 1 and trivially if m = 1, the conclusion will follow if

we prove that

r°° rx
l    \$(t)\mdt\   xe~'x dx = o(X);

P<tfO - ck(x)\mfXxe-'x dx = o(X).

(5.2)

(5-3)
JR J0

Since the inner integral in (5.2) is less than /£° xe~'x dx = 1/i2, (5.2) follows at

once from (1.3). So we have to consider only (5.3). Now by Lemma 1 and Holder's

inequality,

\c£(x) - <p(r)|m < Mtk+x(jXvk\ck(x) - c£(v)\me-'v dv\

(5.4) +Mtk+X(jyk\ck(x) - ck(v)\me-° dv)

= S(x, t) + T(x, t).

If t> < x, we have (by Holder's inequality when m > 1 and trivially when m = 1)

(5.5)     \ck(x) - ck(vT = M

Since k > 0, using (5.5) we have

S(x, t) < Mt [X
Jrt

xBk~x(u)

dufXDx    x
J»     uk +

MM   Ç

V  J„

Bk-\u)

w"
du.

du = o(tx)

uniformly in / by (3.1).

We consider now the contribution of the term S(x, t) to the integral on the left

of (5.3); that is to say,
r°°       rx

(5.6) I     dt  l   xe-'xS(x,t)dx.
JR J0

Given e, there is an x0 such that, for x > x0 and all t > 0, S(x, t) < ext. Hence

the contribution of S(x, t) to (5.6) if x > x0 is less than

r°° rX rX r°°
el    t dt I   x2e~'x dx <e I   x2 dx I    te~'x dt

Jr Jxn Jo JR*o

= fX(l + Rx)e~Rx dx = DeX,
Jo
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where D is a constant. If \ > 0 we have Bk~x(u) = 0 for u < Xq. If \ = 0 then

the term corresponding to n = 0 in the sum defining Bk_i(u) vanishes and hence

Bk~x(u) = 0 for u < Xx. Thus, in any case, there is some tj > 0 such that Bk~x(u)

= 0 for u < tj. Thus we have

S(x, t) < MtC
Jo

Bt\")
du = 0   for x < tj (whatever t).

Hence the integral JR dt fx° xe   ,xS(x, t) dx may be reported by

/.OO fX

/ '*/JR Jn

xe      dx.

Once x0 has been fixed, the inner integral is less than or equal to e'^f^x dx =

ce-"1 (c is a constant) and this gives the required result.

Let ju be a number such that 0 < m¡i < 1 and also mp < k. Then if m > 1, we

have m'(l — ju) > 1, where ¿ + ¿ » 1. Now if u > x, then, by Holder's inequality

when m > 1, and trivially when m = 1, we have

•°Bk-x(u)
\ck(x) - ck(vT = M

Jr        uk+X
du

'x        U

(5.7)
< Mxm"

By (5.7) and Lemma 4,

'/>

2?*-'(«)

T(x, t) < A/i^""1-1 Cu'm^ke-
Bk~\u)

du.

du

(5.8)

Now

(5.9)

i r°°
+ Mxmii-X\   u

'x

= i/(x, t) + ^(x, r).

mH _ - tu
Bk~\u)

M"

<fc

f °° iÔ  f *xF(x, /)«"'* ¿*
J R Jci

'Mlz*f*X^HC+lXlU'
mu   - tu Bt\u)

du

— Jx + J2.

By changing the order of integration

Bk~l(u)

J, < M

(5.10)

f     dt I   "'
JR J0

JfOO
X

0

m<V-'x dx

= o(l)
-y 1 — my-

R""1
= o(X),

by Lemma 5.
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The inner integral in J2, on integration by parts gives in the first place

o(Xx-m>Le-,x) + oí fCCu\du(e-'uu-m>l)\\.

Since e~tuu~m'1 is decreasing, we may omit the modulus in the integral if we put

a - sign in front; another integration by parts now gives

o(Xx-""ie-'x) + oiCe-^e-"^ du\.

Again by (4.3) the second term is o(X   m>le~'x /t). Since tX > 1, this may be

absorbed in the first term. Hence

(5.11) J2 = o(X).

\     dt  I   x u (x, t)e~'x dx
J r Jn

(5.12) < A/J"V dtjXxn"ie-'x dx([X+f°°]u-"v+ke-

= Ix + I2.

Bk~\u)
du

Ix < f°V dtfXuk-mtle'
Jr Jn

Bt\u)
du C\"^e-,x dx

Jn

(5.13)
(      u
Jo

<M      uk"míí
Bk~\u)

du(X'tk-m^-xe-"'dt.
J R

But since 0 < w/t < 1, the inner integral is less than

-'0

¡k-mp-Xç-tu fr m T(k — mfi)
.k-mn

and this yields /, = o(X).

Lastly, integrating by parts the inner integral in I2, we get

(5.14) o(Xx + k-"»e-'x) + oi f°°u\du(uk-miie-'u)\].

The expression in curly brackets in (5.14) is equal to

-f   u du(uk-m»e-<») + 2 (      n"l)/'udu(uk-"»e-<u),

JX Jx

where the second term is to be omitted in the case tX > k — m/x. The first term

may be dealt with in the same way as the corresponding term in the treatment of

J2, and the second term may be estimated by noting that, uniformly in the range of

integration, u = 0(7). We find that the expression in (5.14) is o(Xx+k~m>le~tX).



ABEL SUMMABILITY TYPE 191

Thus we now get

I2 = oíxx+k-mil[Xtke-'x dt  fXx""ie-'x dx)
I JR J0 I

= olxx+k-""lfa°tke-'x dt f"'xm%-'xdx}
(5.15) ( Jo Jo I

= o\xx+k~mii fX'**-■*-»«-* dt)
l •'o i

= o(X),

since k > my.. Combining all these (5.4) to (5.15) we get (5.3).

This completes the proof of the theorem.

Thanks are due to Professor B. Kuttner for his valuable suggestions on the

revision of the paper and to the referee for his valuable comments.
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