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SUBSPACE MAPS OF OPERATORS ON HTLBERT SPACE

W. E. LONGSTAFF

Abstract. An operator A acting on a Hubert space H gives rise to a map q>A on

the set of subspaces of H given by <pA(M) =AM, where '"' denotes norm closure.

This map is called the subspace map of A. By identifying subspaces with projections

in the usual way it is shown that for A =é 0, tpA is uniformly (respectively, strongly)

continuous if and only if the approximate point spectrum of A does not contain 0.

In this case it is proved that <pA preserves the property of being uniformly

(respectively, strongly, weakly) closed and its effect on reflexivity is described.

1. Introduction. Let H be a complex nonzero Hubert space. Denote by <© (H) the

set of (bounded linear) operators acting on H and denote the set of (closed linear)

subspaces of H by G(H). An operator A E 'tfo(H) gives rise to a map tpA:

G(H)^>G(H) given by <pA(M) =AM, where '"' denotes norm closure. We call

this map the subspace map of A. What are the properties of subspace maps? This is

not an easy question to answer especially if one requires the answer to include a

resolution of the most famous unsolved problem concerning invariant subspaces,

namely, is the statement 'for every A E 9>(H) there exists M E Q(H) with

M ¥= (0), H such that <pA(M) G AT true or false. A lattice-theoretic property of <pA

is that it is a residuated map on the complete lattice Q(H) [1]. This is equivalent to

saying that <pA is a complete join-homomorphism on Q(H), that is, the equality

<pA{\/Ma) = \y<pA(Ma)

holds for arbitrary families {Ma} of subspaces of H, where 'V' denotes 'closed

linear span'.

The present work concerns topological properties of subspace maps and con-

tinues, to the case of not necessarily invertible operators, an investigation begun in

[5]. By identifying subspaces and (orthogonal) projections in the usual way, the

uniform and strong operator topologies induce topologies on Q(H). In §3 (Theo-

rem 1) it is shown that for A ^ 0, <pA is uniformly (respectively, strongly) continu-

ous if and only if the approximate point spectrum of A does not contain 0. In §4 it

is shown that if the approximate point spectrum of A does not contain 0, then <pA

preserves the property of being uniformly (respectively, strongly) closed. Since in

this case <pA is injective, it is a homeomorphism onto its range. We conclude by

showing that, for such A, the image § under <pA of a reflexive family ^ of

subspaces is almost reflexive in the sense that § u {H} is reflexive.
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2. Preliminaries. Throughout this paper H will denote a complex nonzero Hubert

space. The inner-product on H is denoted by (• | ■). For x E H, <x> denotes the

subspace spanned by x. If e, f E H, e ® f denotes the operator defined on H by

(e ®f)x = (x\e)f. For/I E <&(H), 91(A) denotes the range of A. For M E 6(H),

PM denotes the (orthogonal) projection with range M. For e E H, \\e\\ = 1 we have

P<e> = e ® e. The map M —* PM is a bijection of Q(H) onto the set of projection

operators on H. Using this correspondence one can topologize Q(H) by inducing

topologies on 9>(H) onto the set of projections. We are concerned with the

topologies on G(H) obtained in this way from the uniform and from the strong

operator topologies. Most of the results, notation and terminology we use concern-

ing Hubert spaces can be found in almost any text on operator theory, for example

[2]. If A E à>(H) and M E G(H), A is said to be bounded below on M ii there

exists e > 0 such that \\Ax\\ > e||x|| for every x E M. The approximate point

spectrum -n(A) of A is the set of scalars X for which there exists a sequence {x„} of

unit vectors of H such that {||v4xn — Xx„||} converges to 0. For an operator

A E $ (H) the following are equivalent (see [2, p. 206 and p. 241ff.])

(1) A is bounded below on H,

(2) 0 <£ ir(A),

(3) A is injective with closed range,

(4) A * is surjective.

An operator A E %(H) is 8Lcontraction if ||.<4|| < 1. If & is a family of operators

on H and f is a family of subspaces of H, as in [4], we let Lat & be the set of

subspaces of H invariant under every member of (£ and let Alg 'W be the set of

operators on H leaving every member of % invariant. *¥ is called reflexive if

f = Lat Alg *%.

An abstract lattice L is called complete if every family of elements of L has a join

and a meet. A subset of a complete lattice L is called a complete sublattice of L if it

is closed under the formation of arbitrary joins and arbitrary meets. If Lx and L2

are complete lattices, an order isomorphism of Lx onto L2 is a bijection <p: Lx —* L2

with the property that a < b if and only if <p(a) < <p(6). A complete isomorphism of

Lx onto L2 is a bijection \p: Lx —» L2 satisfying ¡p(\/aa) = V *Kaa) an<^ *KAö0) =

A <KO identically. It is readily shown that a map of Lx into L2 is an order

isomorphism if and only if it is a complete isomorphism. In any partially ordered

set P,iî a, b E P, [a, b] denotes the subset {c E P: a < c < b).

3. Continuity of subspace maps. We begin by obtaining an expression for the

projection with range tpA(M), for certain operators A and subspaces M, in terms of

A and PM.

Proposition 1. Let A E <$>(H) be a contraction which is bounded below on the

subspace M. Then

(i)AM is closed,

(ü) ||¿V(1 - A*A)\\ < 1,
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(iii) 1 — PM(\ — A*A) is invertible with

||[1 - PM(\ - A*A)]-l\\ < (1 - \\PM(l - A*A)\\)-\

(iv) PAM = A[\ - PM(\ - A*A)]'XPMA*.

Proof. If M = (0) the results follow trivially. Suppose M i= (0) and let e be a

positive real number such that ||y4w||>e||w|| for every w E M. Since A is a

contraction, e < 1. It is clear that A M is closed. Since A is a contraction I — A* A

> 0 and so ||1 - A*A\\ = sup||u||,,(t/ - A*Au\u) < 1. If (1 - A*A)1/2 denotes the

positive square root of 1 — A*A we have ||(1 — j4*/1)1/2||2 = ||1 — A*A|| so

||(1 - A*A)l/2\\ < 1. Let v E H satisfy ||t>|| < 1 and put w = PMv. Then

||(1 - A*A)l/2w\\2 = ((1 - A*A)w\w)

= IMI2 - pw||2 < (1 - 62)|M|2 < 1 - e2.

Hence ||(1 - A*A)X'2PM\\ < (1 - e2)1/2 and so

||¿V1 - A*A)\\ = ||(1 - A*A)PM\\

< ||(1 - A*A)i/2\\ ||(1 - A*A)X'2PM\\ < (1 - e2)'/2 < 1.

This proves (ii) and (iii) follows by a well-known result. Finally, let x E H and put

y = PAMx. Then v = Az for some z E M and x — y E (AM)*-. Since

A*(AM)± G Mx,     A*(x-y)EM-L

PMA*x=PMA*y.

Hence PMA*x = [1 - ¿V(l - A*A)]z so z = [1 - PM(l - A*A)YlPMA*x. Thus

PAMx = v = /1[1 — PM(\ — A*A)]~xPMA*x and (iv) follows. This completes the

proof.

Corollary 1. Let A and M be as in the above proposition. If the net {Ka} of

subspaces converges uniformly (respectively, strongly) to the subspace K and Ka G M

for every a, then K G M, AK and AKa are closed and {AKa} converges uniformly

(respectively, strongly) to AK.

Proof. For every a, PmPk„ — Pk„- Since {PmP^} converges uniformly (respec-

tively, strongly) to PMPK, PmPk = Pkso K G M. Since A is bounded below on Ka

and on K, AKa and AK are closed and PAK = AT~lPKA*, PAK = AT~XPKA*

where Ta = 1 - PK(l - A*A) and T= 1 - P^l - A*A). Clearly {7;} con-

verges uniformly (respectively, strongly) to T. Since

HOI < (1 - \\PK(l - A*A)\\y1 < (1 - \\PM(l - A*A)\\)-\

{HT;-1!!} is bounded. From this and the equalities Tl - T~l = T~\Ta - T)T-X it

follows that {T~x} converges uniformly (respectively, strongly) to T~l. An easy

argument now shows that {PAk„) converges uniformly (respectively, strongly) to

PAK. This completes the proof.

For the above corollary, a proof of the uniform convergence of {AKa} to AK

follows almost immediately from Lemma 1.1 of [3].
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Corollary 2. If S E % (H) is an invertible contraction and M is a subspace of

H, the operator TM = 1 + SPM(S* — S~x) is invertible with inverse 1 — PSM +

PSMS*-XSX. Moreover, PSM = T¿SPMS* and \\Tj\\ < 1 + \\S*~lS-x\\.

Proof. Since S is bounded below on M, 1 — PM(\ — S*S) is invertible. We

have TM = S[\ - PM(\ - S*S)]S~X so TM is invertible. Also,

PSM - S[\ - PM(\ - S*S)]-'7V?* = SSXTMXSPMS* = TMXSPMS*

and so

1 - Psm + PsmS'^S* = 1 - TMXSPMS* + TMXSPMS-X

= TM\TM - SPU(S* - S"')) = Tj¿.

That || TMX\\ < 1 + IIS*-1.?-'!! readily follows. This completes the proof.

In the above corollary the requirement that S be a contraction may be dropped

[5, Lemma]. For an arbitrary invertible S, by applying the corollary to the

invertible contraction A = S/[\S\\, noting that PAM = PSM and performing some

manipulations (possibly involving PSMS*~l(\ — PM) = PMS*(\ — PSM) = 0), the

corresponding results for S can be obtained.

We can now prove the main result of this section.

Theorem 1. Let A E<$> (H) with A =£ 0. The subspace map <pA : G(H) -> 6(H) of

A is uniformly (respectively, strongly) continuous if and only if0& ir(A).

Proof. If 0 f£ w(A), then A is bounded below on H and so is the contraction

A/\\A ||. The uniform (respectively, strong) continuity of q>A follows from Corollary

1 and the observation that tpA = <Pa/\\a\\-

Suppose that <pA is uniformly (respectively, strongly) continuous. We show that A

is injective. Suppose not. Let e E ker A with ||e|| = 1 and let/ E (ker A)1- with

11/11 = 1. For each positive integer n put en = cos \e + sin \f. Then ||t?n|| = 1 and

{en} converges to e. For each g E H we have

H(^> - KM -IKskX -(g\e)e\\
= \\(g\en - e)e„ + (g\e)(en - e)\\

<2\\en-e\\\\g\\.

It follows that the sequence of subspaces {XO} converges uniformly to <e>. Since

A(en) = (Af} =£ (0), {A(en}} does not converge strongly to A(e}. This con-

tradiction proves that A is injective.

Now suppose that <pA is uniformly continuous but that 0 E ir(A). Then A* is not

surjective. Since A is injective, 9^(A*) is dense so tyL(A*) is not closed. Let

x E <3l(A*)\ <$l(A*) with ||x|| = 1. There is a sequence {x„} of unit vectors, each

belonging to <R,(A*), converging to x. (If z„ E <5l(A*) and {zn} converges to x, we

may suppose ||z„|| >\. Then x„ = zn/\\zn\\ gives such a sequence.) Put Mn =

<x„>x and M = <x>x. Then {Mn} converges uniformly to M. Now

iM = <&(APM) = (ker PMA*)X. Since PM = 1 - x ® x, ker PMA* = {y E

H: A*y = (A*y\x)x). Since x ç£ ̂ (A*), ker PMA* = ker A* and so AM=%(A).
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We also have AM„ = (ker PMA*)L and ker PMA* = {y E H: A*y =

(A*y\xn)xn). Since x„ E 9l(A*), x„ = A*yn for some yn E H. Clearly yn E

ker PM A * and yn & ker A *. Hence ker A* g ker PMA * (strict inclusion) and so,

taking orthocomplements, AMn GAM. Thus \\P~äm ~ PämW = 1 f°r every n so

{AMn} does not converge uniformly to AM. This contradiction proves that

0 <2 ir(A).

Finally, suppose that <pA is strongly continuous. Then A is injective. It is easily

shown that a sequence {wn} of unit vectors of H converges weakly to 0 if and only

if the sequence of subspaces {<w„>} converges strongly to (0). It follows that A has

the following property: for every sequence {wn} of unit vectors converging weakly

to 0, the sequence {^*vn/||/l>vn||} converges weakly to 0. The proof of the theorem

is completed by showing that every injective operator B E 9b(H) with this prop-

erty has closed range and so 0 £ <n(B).

Suppose 91(B) is not closed. Let v E 9i(B)\ 91(B) with ||c|| = 1. There is a

sequence {v„} of unit vectors, each belonging to 91(B), converging to v. Now

v„ = Bw„ for some wn ^ 0. If {wn} possessed a (norm) bounded infinite subse-

quence {w } say, this subsequence would, in turn, possess a weakly convergent

subsequence {w' } say, converging weakly to, say, w. Then {Bw'} would converge

weakly to Bw. But {Bw' } converges to v so we would have v = Bw. Since

v Ç 91(B), no infinite subsequence of {wn} is bounded and so every infinite

subsequence of {||wj|} converges to oo. Consider the sequence {>vn/||>vn||}. This

bounded sequence possesses a weakly convergent infinite subsequence {w /||w_ ||}

say. Let the weak limit be u. Then {Bw_/||w_||} converges weakly to Bu. Since

\\Bw„.\\ = ||t^|| = 1 and {||w„||} converges to oo, {Äw^/||w^||} converges to 0.

Thus Bu = 0 so u = 0. By the property of B, since {w /||w_ ||} converges weakly to

0, {Bw./\\Bw||} converges weakly to 0. That is, {v } converges weakly to 0. But

{vn } converges to t; so v = 0. This contradicts v & 91(B). Thus B has closed range

and the proof of the theorem is complete.

Remarks. 1. It may be of some independent interest to note that, for an injective

operator B, 0 £ ir(B) if and only if for every sequence {wn) of unit vectors

converging weakly to 0 the sequence {5rVn/||fiwn||} converges weakly to 0. The

necessity of the condition is easily established, the sufficiency is proved above.

2. The above proof also shows that, for an injective operator A E 9h (H), <pA is

strongly continuous if and only if for every sequence {A/„} of one-dimensional

subspaces converging strongly to (0) the sequence {AMn} converges strongly to (0).

The latter condition does not imply that A is injective even if A # 0. (For example,

consider^ = 1 — e <8> e where e E H with ||e|| = 1.)

3. If H is infinite-dimensional and K is a nonzero compact operator on H, then

<pK is neither uniformly nor strongly continuous (since 0 E ir(K)).

4. For a nonzero normal operator A E 9b (H), <pA is uniformly (respectively,

strongly) continuous if and only if A is invertible (since it(A) = a(A), where a(A)

denotes the spectrum of A).

5. For a nonzero operator A E 9b (H), both <pA and q>A. are uniformly (respec-

tively, strongly) continuous if and only if A is invertible. The proof is immediate.
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4. Transforms of families of subspaces. Let A E 9b (H) and let <% be a family of

subspaces of H. Call the family of subspaces {<pA(M): M E 'S) the transform of <¥

by A. This extends the definition given in [5]. As in [5], call ®i uniformly

(respectively, strongly, weakly) closed if the set of projections {PM: M E W} is a

uniformly (respectively, strongly, weakly) closed subset of 9b (H). If 0 £ w(A) the

subspace map <pA: G(H) —» G(H) is given by <pA(M) = AM. Since, in this case, A

is injective so is q>A. A description of the range of <pA and its inverse map follows.

Lemma. Let A E 9b(H) with 0 E ir(A). The range of the subspace map q>A is

{ME G(H): M G 91(A)). For every subspace M in the range of <pA, A*M'L is

closed and <pA(M) = (A*M±)-L.

Proof. It is clear that the range of <pA is included in {M E G(H): M G 91(A)}.

Let M E G(H) with M G 91(A) and put N = (A*M^)L. We show that M =

<pA(N). For every x E N and v E M x, (Ax\y) = (x\A*y) = 0 so <pA(N) G M. Let

v E M. Then v = Aw for some w E H. For every u E M±, (w\A*u) = (^4w|m) =

(v\u) = 0 so w E N and v E <pA(N). Hence M = <pA(N). Finally, we show A*MX

= NL. Clearly A*M^ G N*-. Let s E N*-. Since A* is surjective s = A*t for

some t E H. For every r E N, (t\Ar) = (A*t\r) = (s\r) = 0 so r E (^(N))*- =

M-1 and s E A*MX. Thus A*M± = N1- and the proof is complete.

We can now prove the main result of this section.

Theorem 2. Let A E 9b (H) with 0 £ tr(A). Let & be a family of subspaces of H

and let § be the transform of 'S by A. If 'S is uniformly (respectively, strongly,

weakly) closed so is §.

Proof. Let fr" be uniformly (respectively, strongly) closed and let {PAM} be a

net converging uniformly (respectively, strongly) to the (necessarily a projection)

operator PN with Ma E ®i for every a. It is clear that .TV G 91(A) (cf. Corollary 1)

so, by the lemma, N = AM for some subspace M. We need to show that A/Gf.

For every a we have ker A* G (AM^ and ker A* G (AM)X. Put Ka = (AMa)x

0 ker ̂ 4* and K = (AM)X G ker A*. Then Ka G 91(A) and K G 91(A). Now .4*

maps 91(A) bijectively onto H and so is bounded below on 9i(A). Since {Ka}

converges uniformly (respectively, strongly) to K, {A*Ka} converges uniformly

(respectively, strongly) to A*K by Corollary 1. But A*Ka = A*(AMa)x - M/ and

A*K = A*(AM)X = Mx by the lemma. Thus {Ma} converges uniformly (respec-

tively, strongly) to M so M e f.

Finally, suppose 3F is weakly closed. Let the operator E E 9b (H) be the weak

limit of a net {PAM } with Ma E $ for every a. By the weak compactness of the

unit ball of 9b(H) the net {PM} possesses a subnet converging weakly to an

operator F E 9b(H). Since 3F is weakly closed F = PM for some M E 'S. This

subnet converges strongly to PM so PAM is the strong limit of a subnet of {PAMJ.

But this subnet converges weakly to E so E = PAM. This proves that S is weakly

closed and the proof is complete.

Let A E 9b (H) with 0 £ ir(A). The subspace map <pA is an order isomorphism of

G(H) onto its complete sublattice [(0), 6l(.4)] and so is a complete isomorphism of
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G(H) onto [(0), 91(A)]. Also, Theorems 1 and 2 show that <pA is a homeomorphism

of G(H) onto [(0), "31(j4)] if each is furnished with either the induced uniform or

with the induced strong operator topology. If 'S is a reflexive family of subspaces

of H, then 'S is strongly closed [4] and so its transform Q by A is strongly closed.

Since a reflexive family necessarily contains H, § is not reflexive if A is not

invertible. However g u {H} is always reflexive.

Proposition 2. Let A E 9b (H) with 0 & it(A). Let 'S be a family of subspaces of

H containing H and let g be the transform of $ by A. Then Lat Alg g = % u {H}

where % is the transform of Lat Alg 'S by A. If 'S is reflexive so is § LI {H}.

Proof. Let M E Lat Alg 'S and let T E Alg g. Since 91(A) E g, T leaves

91(A) invariant and so the transformation X = A~XTA is bounded on H. Clearly

X E Alg 'S so X leaves M invariant. It follows that T leaves AM invariant. This

shows that % u {H} G Lat Alg g.

Now let N E Lat Alg g. If E denotes the projection with range 91(A), B(\ - E)

G Alg g for every operator B E 9b (H). Thus B(\ - E)x E N for every x E N

and it follows that either N G 91(A) or N = H. Suppose N =£H. Then N = AK

for some subspace K. We show that K E Lat Alg 'S. Let 5 E Alg 'S. The transfor-

mation ASA~X is bounded on 91(A) so the transformation R = (ASA~l)E is

bounded on H. We have RA = AS and clearly R E Alg g. Thus R leaves N

invariant so RN = RAK = ASK G AK. It follows that K is invariant under S and

that N E %. Hence Lat Alg S = % u {H).

If 'S is reflexive we have % = S and

Lat Alg(§ u {#}) = Lat Alg S = g u {^}

so s u {H} is reflexive. This completes the proof.
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