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UNIQUENESS AND QUASI-MEASURES ON

THE GROUP OF INTEGERS OF A/>-SERIES FIELD

WILLIAM R. WADE AND KAORU YONEDA

Abstract. Let G be the group of integers of a/»-series field and suppose that S is a

character series on G. If TV,, #2,... is any sequence of integers and if Sp>/j -* 0 a.e.

on G, as y —► oo, then S will be the zero series provided S never diverges

unboundedly.

Let G denote the group of integers of a /»-series field, where p is a prime > 2.

Thus, any element x G G can be represented as a sequence {x,}°l0 with 0 < x¡ <p

for each / > 0. Moreover, the dual group (i/'m}^_o of G can be described by the

following process. If m is a nonnegative integer with m = 2*_0 «*/>*> 0 < ak <p

for each k, and if x E G then

(i) *m(x) = n #k*),
k-0

where for each integer k > 0 and for each x = {x,} E G, the function <f>k is defined

by

(2) <t>k(x) = exp(2mxk/p).

In the case that p = 2, the group G is the dyadic group introduced by Fine [2] and

the functions {^m}m=0 are the Walsh-Paley functions. A detailed account of these

groups and basic properties can be found in [5].

Denote the partial sums of a character series 5 = 2^_0 ^mi//m by

(3) SN =  ¿ am^m,       N - 1, 2,....
m = 0

Vilenkin [6] has shown that if SN —> 0 everywhere on G as N -* oo, then S is the

zero series, i.e., am = 0 for m = 0, 1, . . . . When N is replaced by pN and conver-

gence is relaxed on a countable subset of G, a growth condition is usually necessary

to retain uniqueness. For example, in [8] we saw that if S » converges to an

integrable/on all but countably many points in G, and if p~ Sp« —>0 everywhere

on G as N-> oo, then S is the G-Fourier series off. The second hypothesis of this

result cannot be relaxed at a single point x0 E G where | Sp*(x0)\ —» + oo as
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N —» oo. Indeed, if D = 2^_0 $m represents the Dirichlet kernel on G, then since

DA-x)=[pN   »SîUv-1-^^.
[ 0       otherwise,

it is clear that both Dp*(x) andp~NDpN(x) converge to zero for x ¥= 0 as N —> oo

but Z) is not the zero series. It is not yet known how far the first hypothesis can be

relaxed (see [7]). One would expect that "convergence off a countable set" could be

replaced with "convergence a.e." but even in the case/? = 2 this has not been done.

If one strengthens the second hypothesis to condition (4) below, then conver-

gence a.e. can be used. Indeed, we shall prove the following result.

Theorem. Suppose that S = 2*=0 ^^ and that (*r%)jL\ is a subsequence of the

natural numbers. If Spmj -» 0 a.e. on G asj —» oo, and if

(4) lim sup ^(x)! < oo,       xEG,
y'->oo

then S is the zero series.

Techniques used to establish uniqueness for Walsh series fall into two categories:

proof by a Haar series argument (e.g., [1]), and proof by differentiation (e.g., [2]

and [4]). Neither of these techniques seem suited to prove the theorem above.

Our technique introduces a fresh viewpoint, and uses quasi-measures (defined

below) as a crutch for carrying out the necessary calculations. Recall that the

topology of G has a base at 0 which consists of closed/open subgroups G„ whose

Haar measure m(G„) equals/?~", n > 0. We shall denote G0 = G by 1(0, 0), and for

each integer n > 0 we shall denote the cosets of Gn by I(k, n), 0 < k </>". The

collection of sets I(k, n),0<k<p",n = 0,l,..., will be denoted by 5. Observe

once and for all that I(kx, n) n I(k2, n) = 0 for kx ¥= k2, that m(I(k, n)) = p~",

that (reordering if necessary)

kp+p-l

(5) I(k, n) =     U     /(A n + 1)
l = kp

and that each ip, is constant on each I(k, n) when / <p". A set function ¡i defined

on í is said to be a quasi-measure if

kp+p-l

(6) M(/(*,«))=     S     li(I(l, n + \)).
l=kp

Clearly, every Borel measure on G is also a quasi-measure.

Fix integers k and n with 0 < k <p". By an argument similar to that found in

[3], one can show that if X is a Borel measure on G, and if 5 is its Fourier-Stieltjes

series, then

X(I(k, n)) =   lim    f       SN dm.
JV->oo   Jl(k,n)

Since Si(k,n) $i dm = 0 fox I > p " and since Sp» is constant on I(k, n), it follows that

X(I(k, n)) =p~"Spr(x) for any choice of x E I(k, n). Thus we are led to associate
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with any character series 5 the set function ju, defined on 5 by

(7) fi(I(k, »)) =p-"Spr(x),       x El(k, n).

A routine calculation (recall that the sum of pth roots of unity is zero) establishes

that this set function ¡i is a quasi-measure. Moreover, since the characters of G are

orthogonal it is clear that a necessary and sufficient condition for a character series

S to be zero is that its associated quasi-measure satisfies ju(7) = 0 for all I E 5.

We are now prepared to prove the theorem. Indeed, if S is the given series and if

ju is its associated quasi-measure, we need only show that ¡i = 0. We shall actually

show that (i(G) = 0. The same argument can be used to show that ju(7) = 0 for all

I E í and thus complete the proof.

We assume for simplicity that w, = j. Fix 0 < e < 1. By Egoroffs Theorem we

can choose a subset Ex of G such that m(Ex) > 1 — e and such that SpN converges

uniformly to zero on Ex, as N —» oo. Thus, given £, > 0 there exists an integer Nx

such that |5^jv,(jc)| < e, for x E Ex. But Spn, is actually constant on sets of the form

I(k, Nx) so there exists a subset Z, of the positive integers such that k E Zx implies

\SpKl(x)\ < e, for x E I(k, Nx).

Observe that if | Z, | represents the cardinality of Z, then

|Z,| -P~N' =   2   m(I(k, Nx)) > m(Ex) > 1 - e.

Thus 1 — |ZJ • p~Ni < e. Now, let kx be an integer which satisfies

\v(I(kx,Nx))\=max\v(I(k,Nx))\
kmz{

and observe that Spn —> 0 a.e. on I(kx, Nx) as N —» oo. Thus, given e2 we can choose

a subset E2 of I(kx, Nx) such that m(E2) > (1 — e)p~N' and choose an integer N2

such that \Spnt+N2(5c)\ < e2 for x E E2.

Continuing in this manner, given any positive integer/ and & > 0 we can choose

positive integers Nj, kp subsets Zj of natural numbers and £, of G such that

(8) l-|Z>-^<e,

(9) ifk E Zj then \SpK¡,-,Nj(x)\ <ej   for x El(k, Nx + ■ ■ ■ + Nj)

and

I/*(/(*,.*! + ••• +^))l
(10) = max{| fi(l(k, Nx+ ■ ■ ■ +Nj))\: k E Zj

and I(k, Nx+ ■ ■ ■ +Nj)G l(kj_x, Nx + ■ ■ ■ +Nj_x)}.

To estimate n(G), observe by (6) that | ¡j.(G)\ < Tx + fx where

Tx = ^{\ß(I(k,Nx))\:kEZx]

and

fy = 2 {I /*(/(*, ̂ i))h 0 < k <pN\ k E Z,}.

To estimate Tx we observe that \Zx\p ~N' < 1 follows from the fact that there are at

most/?^1 sets of the form I(k, Nx). Therefore, by (7) and (9) we have that Tx < e,.
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To estimate Tx we apply (10) to conclude that

fx<(pN>-\Zx\)\p(I(kx,Nx))\.

Thus

I M«7)l < «, +(pN<-\Zx\)\v(l(kx,Nx))\.

But (6), (7), (9), and (10) can be used to estimate | ¡i(I(kx, Nx))\ by summing over

those intervals I(k, Nx + N2) which are contained in I(kx, Nx) and separating the

indices k E Z2 from k & Z2. Again \Z2\p~N* < 1 follows from the fact that there

are at most/»*'2 sets of the form I(k, Nx + NJ contained in I(kx, Nx).

If we continue breaking up | n(I(kp Nx + • • • + Nf))\ in this manner we arrive at

the following inequality:

|/i(G)l < e, + e2(p»> - \ZX\) + ■■■ +e, H (/>"' - \Z,\)

do ';■
+ \li(l(kJ, Nx + --- +Nj))\ ■ n (PN- - \Z,\),

1=1

/ = 1, 2, . . . . Set e, = e/2 and for each integer/ > 1 set

(J-i
Ej = 2 -Je n(^-iz,i)j '.

It follows from (8) and (11) that

(12) IMG)! < e(l - 2-J) + ^+-+tlJ\(l(l(lcpNi +■■■ +Nj))\.

Observe by construction that the collection of compact sets

{l(kJ,Nx + -..+NJ)}-_l

is   nested.   Consesquently,   we   can   choose   a   point   x0   which   belongs   to

I(kj, Nx + ■ • ■ +Nj) for all integers/ > 1. By (7), then, the estimate (12) becomes

\n(G)\ < e + t\-S,»1+-+MÁxQ)\.

Our simplifying assumption turns (4) into lim sup^^^, SpK(x0)\ = A < oo. Thus

\n(G)\ < e + Ae.

In particular, if we let e —> 0 we obtain ¡i(G) = 0, thus completing the proof of the

theorem.
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