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A RADON-NIKODYM THEOREM FOR NATURAL CONES
ASSOCIATED WITH VON NEUMANN ALGEBRAS

HIDEKI KOSAKI

ABSTRACT. The natural cone associated with a von Neumann algebra admitting a
cyclic and separating vector £, is considered. For any vector § in the cone, there
always exists a closed operator ¢ affiliated with the algebra satisfying § = t/tJ §,.

1. Introduction. Following the development of the Tomita-Takesaki theory [10], a
natural cone for a von Neumann algebra was introduced independently by several
authors [1, 2, 5] and shown to be a good “invariant” for the algebra (and its
commutant) in question. For a von Neumann algebra 9% on a Hilbert space JC
with a cyclic and separating vector £, the natural cone 9" may be defined as the
closure of the set of all vectors aJaJ &, a € 9.

It is thus natural to ask if an arbitrary vector in the cone %" can be expressed as
tJtJ &, with an (unbounded) closed operator ¢ affiliated with 9. The purpose of
the paper is to show the affirmative answer to this question.

2. Notations and the main result. Let (9, JC, &) be as in the introduction and ¢,
be the faithful normal positive functional on 9N defined by @y(x) = we(x) =
(x5l&), x € 9. We denote the modular operator and the modular conjugation
associated with the above triple simply by A and J respectively [10]. Fixing these
throughout, the modular automorphism group {Ad A”},cg on 9N will be denoted
by {0,},cr- Also we denote by I, (resp. IMy) the set of every x € M (resp.
x" € OM’) such that the map t € R - A’xA™ (resp. t € R — A™*x’A") extends to
an entire function.

DEFINITION 2.1 [1, 2, 5). The natural cone %" is the closure of A/49T, &, in IC.

As mentioned earlier, the natural cone 9* may be defined as the closure of
{aJaJ &y; a € O }. Among other properties, the cone enjoys the following.

PROPOSITION 2.2 [1, 2, 5]. (i) The natural cone %" is pointwise invariant under J.
(ii) The cone F* is self-dual. (iii) The map £ € F* > w, € N}, the positive part of
the predual, is bijective.

We now state the next Radon-Nikodym theorem for the cone, which is our main
result in the paper.

THEOREM 2.3. The cone %" is precisely the set of all vectors of the form & = tJtJ &,
where t is a closed operator affiliated with 9 and satisfies &, € %D () and JtJ &, =
Jtt, € D(2).

Received by the editors March 10, 1981.
1980 Mathematics Subject Classification. Primary 46L10.
© 1982 American Mathematical Society
0002-9939/82/0000-0411/$02.25
207



208 HIDEKI KOSAKI

We now prove that a vector tJtJ§, described in the theorem belongs to the cone,
and the rest of the paper will be devoted to the construction of an (unbounded)
operator ¢ by starting from an arbitrary vector in the cone. To prove tJtJ§, € Ph,
we set 1, = te, € ON, n=1,2,..., where e, is the spectral projection of |7| =
(t*1)'/? corresponding to the interval [0, n]. It is easily shown that ¢,Jt,J &, tends to
tJtJ €, (as n —> ), due to the fact that ¢ and JuJ are affiliated with 9N and O’
respectively. Since each t,Jt,J £, belongs to the cone, the result follows from the
closedness of the cone.

By Proposition 2.2 (iii), any ¢ € 9} admits a unique implementing vector in
9" which we will denote by £,. (Therefore, &, = &) Then the map x¢, € IMé, —
x*§, € ‘DIL{P is a densely-defined closable (conjugate linear) operator. It is easy to
show that the phase part of the polar decomposition of the closure is J (by
Theorem 1 [1]). The positive selfadjoint part, denoted by A"p{pzo, is known as (the
square root of) the relative modular operator (of ¢ with respect to ¢,). Finally we
remark that, when @ = o, 4, , = 4, is the usual modular operator A.

3. Technical lemmas. In this section we collect some technical lemmas. We
choose and fix ¢ € M}, &, € 9" throughout the section.

LEMMA 3.1. The map x € I > (A'*x&|¢) gives rise to an element in O,
which we shall denote by .

PROOF. One can easily show that this linear form is weakly continuous. (See the
proof of Lemma 2.10 [5], for example.) Also, the self-duality of 9" (Proposition 2.1
(i1)) and Definition 2.1 guarantee the positivity of y. Q.E.D.

Thanks to recent theories of noncommutative LP-spaces, [3,6,7,8,9)], it is
known that both of A/#A!/# and A'/“A)/* are densely-defined closable operators on
JC. The relation

4 — (A1/4A1/4)
m (aggearreye = (avnly
is also known. The next result is a special case of the more general result obtained
in [7). However, for the sake of completeness, we present its proof.

LEMMA 3.2. For each x € O, the vector Aix¢, belongs to the domain of A/,

PrOOEF. For each y € 9N, we set
(z) = (Bf2xtolA0=D/25,),
and observe that it is bounded continuous on 0 < Rez < 1 and analytic on
0 < Re:z < l.For:z = it € iR, we estimate
| fit)] = |(AL 28| A" 2AY k,)| = |(AL 2|2y *&o)]
= [(A™/20E 2xto| Jy* T &) | = [(A/2AL 2]y T Elgo)l  (JyJ € ON)
< |IxIigoll y&oll-
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Here we used the fact that A™/2A%/2 = (Dg: Dgy)*,,, belongs to 9. Also for
z=1+it €1+ iR, we estimate
LA+ it)] = (MG ixbol A"/ o)l = (AT x*& | ko)l < lxlllg N1 YEoll
It now follows from the Phragmén-Lindelof theorem that
(3] = 1(Bgaaxbol ' o)l < llxllll ol max(jigol, l1€,11)-
Since 9N &, is a core for the selfadjoint operator A!'/? (hence for A!/#), the above
inequality implies that A /*x£, belongs to D(A'/4). Q.E.D.

LeEMMA 3.3. The positive selfadjoint part |(A'/ A%\ of the polar decomposition of
(DA% is exactly A2, (See Lemma 3.1 for the definition of \.) Furthermore, the
vector £, belongs to GD(Af/ N DAY,

PROOF. Let (A/!A'/*)"= uh be the polar decomposition. Clearly uh is (-3)-
homogeneous and §0 belongs to 9 (h), that is, h? is integrable (see [3]). We thus
conclude that u € 9 and h = A,(,,,o with a unique x € 97, (Corollary 18 (3], or
§§1, 2 of [8]).

For x € 9N, we compute

(xh&o|hgo) = (xJh&o|ThE,)
(ht&o = AY2¢, = £, € 9" and Proposition 2.2 (i))

(e (Aea ) ol (At ) )
) = (w*(Al2AY4) gl TxTur(ALA4) E,)

(e (AN 4) &0l TxI (A2AV4)E,)  (u € O, JxJ € ')
= (B8 4) ot (A" /) o) = (BpabolxIAL)

The operator A/* being (- )-homogeneous [3], Lemma 2.1 [8] yields
IxXIDL, = Do, 14(x) T
Therefore, (2) implies
(xhéo|hgo) = (A.',,éﬁﬁoIA;éZJ °-i/4(x)§o) = (A]p(vigo"lo—iﬁ‘(x)&))
= (&, Wo_/a(x)50) = (0_/a(x)olé,) (Proposition 2.2 (i)
= (AV4xglg,) = ¥(0).
Clearly (xh&,|hé;) = Y(x) remains valid for all x € 9N so that h = Axv A'/ &
To complete the proof, it suffices to show §, € D(A/*) due to Proposmon 22

(i) and J 9D (A™'/4) = D (A!/4). By (1) and the first half of the proof, the right polar
decomposition of (A'/*A}/ %) is

(av/my = Al
We thus have
& = Df2o = (8'*0g) ubo.
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It follows from Lemma 3.2 that we actually have £, = A'/*A/%ué, without the
closure sign so that
£, € R (A4 = D(A/4). QED.
COROLLARY 3.4. The set MG, is included in D (A™/*AZA!/4),

PrROOF. Lemma 3.3 shows that £ € D(A™'/*A[/2A7'/% so that the corollary
follows from a homogeneity argument. (See Lemma 2.1 [8].) Q.E.D.

4. Proof of Theorem 2.3. This section is devoted to the proof of the nontrivial
half of Theorem 2.3. We choose and fix an arbitrary vector £ in the cone P4 Let
@ = w; € M, so that we will write £ = £ henceforth and try to construct an
operator ¢ satisfying §, = tJtJ &, Easy computations for the matrix algebra suggest
that the closure (or the adjoint) of the densely-defined (Corollary 3.4) symmetric
operator A™'/*A}/2A7'/4 is an obvious candidate for z. However, it does not seem to
work, the reason being lack of information on a core for the operator
A7/4A[/ZAT1/4, (See the very last part of §4.) Instead, we define

t = ((A—l/‘tA%iA—l/A)l%eo)*’
where ¢ is constructed from ¢ as in Lemma 3.1. We then have
(3) A-|/4A‘}£A—l/4 C (A"/“A‘LﬁA"/“)* C ((A"/“A,%iA"l“)lg%fo)* =t
In particular, Mgé, C D (¢) and it is easy to see
(4) sz—l/4A‘L/piA—l/ﬁ)/£0 = A-—l/4A‘;4§A—1/4x/yr£0, x’,y’ = @n{;’
by making use of homogeneity.
PrROOF OF THEOREM 2.3. For { € 9)(¢) and x’, y’ € M, (3) and (4) together
imply
(X'§ |A_]/4A%§A_l/4y/£0) — (§ |A_l/4A%20A_I/4X/*y/§O)

= (|x'*y’¢,) (the definition of ¢)

= (X'&|y'&)s
so that x’{ € D(¢) and tx’¢ = x't§. Thus, the closedness of ¢ and density of I in

9N’ (with respect to the strong operator topology) imply that ¢ is affiliated with 1.
By (3) we have

%) thy = A%, JuUg, =NV, = AV,
(See Lemma 3.3.) For each x’ € 9, we then compute
(A A ) = (6 NIAAR) = (LA 01T g,)
= (&IA28x T &) = (§1A) 0 /X )o)
= (§¢|JO_,./4(Jx’*J )*gy) = (gylj"i/‘t(Jx/J )gp)
= (0;/4(Jx'J)¢,)¢,) (Proposition 2.2 (i))
= (0, /a(Ix'T)) = (A%, ,{(Jx'T)Eo|E,) (the definition of )
= (Ix'T&lE,) = (£|x'¢) (Proposition 2.2 (i)).
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Thus, the definition of ¢ shows that A%, € (¢) and rA'/%, = &,. These facts
together with (5) complete the proof. Q.E.D.

5. Concluding remarks. Provided that 9 is a factor of type III,, 0 < A < 1, fora
cyclic (and separating) vector &, in "%, there always exists an (invertible) bounded
operator ¢ in N so that & = tJtJ &, In fact, due to a result of Connes-Takesaki
(see Theorem 3.3 [6]), there exists a unitary operator u in 9N satisfying ¢, < /juqu*
and uqu* < L, with some /;, I, > 0. It is easy to check (Lemma 3.12 [2])

(D(ugpu*): D‘Po)-i/4J(D(“‘P“*): DiPo)-i/dgo = “-’“Jip
so that 1 = u*(D(ugu*): Degy)_;/4 does the job.

We also know the necessary and sufficient condition for a generic £ in 9" to
admit a positive bounded ¢ in 9N satisfying £ = tJeJ§, (Proposition 3.1 [8]).
However, our construction of the operator ¢ in §4 does not guarantee the positive
selfadjointness of ¢ (unless A is bounded). The problem of finding a positive
selfadjoint ¢ seems to deserve further investigation.
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