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A RADON-NIKODYM THEOREM FOR NATURAL CONES

ASSOCIATED WITH VON NEUMANN ALGEBRAS

HIDEKI KOSAKI

Abstract. The natural cone associated with a von Neumann algebra admitting a

cyclic and separating vector £g is considered. For any vector £ in the cone, there

always exists a closed operator t affiliated with the algebra satisfying £ = i/t/ig.

1. Introduction. Following the development of the Tomita-Takesaki theory [10], a

natural cone for a von Neumann algebra was introduced independently by several

authors [1, 2, 5] and shown to be a good "invariant" for the algebra (and its

commutant) in question. For a von Neumann algebra 91L on a Hubert space %

with a cyclic and separating vector £<,, the natural cone 9* may be defined as the

closure of the set of all vectors aJaJ£0, a E 91L.

It is thus natural to ask if an arbitrary vector in the cone 91* can be expressed as

tJU£0 with an (unbounded) closed operator / affiliated with 91t. The purpose of

the paper is to show the affirmative answer to this question.

2. Notations and the main result. Let (91L, %, £0) be as in the introduction and tp0

be the faithful normal positive functional on 91L defined by <p0(x) = u¿ (x) =

(x£0|£0), x E CTt. We denote the modular operator and the modular conjugation

associated with the above triple simply by A and J respectively [10]. Fixing these

throughout, the modular automorphism group (Ad A"},eR on <Dlt will be denoted

by {a,}reR. Also we denote by GJíi0 (resp. 91t¿) the set of every x E 91L (resp.

x' E <3lt') such that the map t E R->A"xA~" (resp. / E R->A""x'A") extends to

an entire function.

Definition 2.1 [1, 2, 5]. The natural cone 9* is the closure of A1/49TL+£0 in %.

As mentioned earlier, the natural cone 9* may be defined as the closure of

{aJaJ£0; a E 911}. Among other properties, the cone enjoys the following.

Proposition 2.2 [1, 2, 5]. (i) The natural cone 9* is pointwise invariant under J.

(ii) The cone 9* is self-dual, (iii) The map $ef h»ü{6 <3H+, the positive part of

the predual, is bijective.

We now state the next Radon-Nikodym theorem for the cone, which is our main

result in the paper.

Theorem 2.3. The cone 9* is precisely the set of all vectors of the form £ = UU^çy,

where t is a closed operator affiliated with 91L and satisfies |0 E 9)(t) and JU£0 =

M0E9)(t).
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We now prove that a vector tJtJ£0 described in the theorem belongs to the cone,

and the rest of the paper will be devoted to the construction of an (unbounded)

operator / by starting from an arbitrary vector in the cone. To prove tJtJ£0 E 9*,

we set /„ = te„ E 9H, n = 1, 2, .. . , where e„ is the spectral projection of |/| =

(t*t)l/1 corresponding to the interval [0, n\. It is easily shown that tnJtnJ£0 tends to

tJtJ£0 (as n -^ oo), due to the fact that ( and JtJ are affiliated with 911 and 911'

respectively. Since each tnJtnJ£0 belongs to the cone, the result follows from the

closedness of the cone.

By Proposition 2.2 (iii), any <p G 911* admits a unique implementing vector in

9* which we will denote by ¿^ (Therefore, L = £0.) Then the map x£0 E 91L|0 —»

x*^ G 911^ is a densely-defined closable (conjugate linear) operator. It is easy to

show that the phase part of the polar decomposition of the closure is J (by

Theorem 1 [1]). The positive selfadjoint part, denoted by A^, is known as (the

square root of) the relative modular operator (of <p with respect to <p0). Finally we

remark that, when <p = <p0, \aq¡0 = \ is the usual modular operator A.

3. Technical lemmas. In this section we collect some technical lemmas. We

choose and fix qp G 91t*, i^ E 9^ throughout the section.

Lemma 3.1. The map x G 911 h> (A1/4x£0|^) gives rise to an element in 911*,

which we shall denote by ip.

Proof. One can easily show that this linear form is weakly continuous. (See the

proof of Lemma 2.10 [5], for example.) Also, the self-duality of 9* (Proposition 2.1

(ii)) and Definition 2.1 guarantee the positivity of \p.   Q.E.D.

Thanks to recent theories of noncommutative L^-spaces, [3, 6, 7, 8, 9], it is

known that both of A^4A1/4 and A1/4A^4 are densely-defined closable operators on

%. The relation

(i) (^y/4Y = (ai/4a^:)-

is also known. The next result is a special case of the more general result obtained

in [7]. However, for the sake of completeness, we present its proof.

Lemma 3.2. For each x E 91L, the vector A^,4x£0 belongs to the domain of Al/4.

Proof. For each y E 9H, we set

/(z) = (A^x£0|A<—-)/^0),

and observe that it is bounded continuous on 0 < Re z < 1  and analytic on

0 < Re z < 1. For z = it G íR, we estimate

\f(it)\ = KA^xlolA'^A'/^o)! = |(A^x£0|A'-'/Vv*£0)|

= |(A-"/2A^x£0|/y*./£0)| = |(A-"/^xJv7|0|£0)|       (JyJ E 91L')

< IWIIIIollll-yU-
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Here we used the fact that A""/2A^ = (D<p: D<p0)*t/2 belongs to 9H. Also for

z = 1 + it E 1 + z'R, we estimate

1/(1 + *)| = |(A^A^0|A''^¿0)| = |(A^Vx*^|A''/^0)| < ||x||||g||| v£0||.

It now follows from the Phragmen-Lindelöf theorem that

\jQY = KA^olA'/^o)! < ||x||||^0|| maxdlioll, ||€J|).

Since 91L>¿o is a core for the selfadjoint operator A1/2 (hence for Al/4), the above

inequality implies that A^4x|0 belongs to <Î>(A1/4).    Q.E.D.

Lemma 3.3. The positive selfadjoint part |(A^,4A1//4)"| of the polar decomposition of

(AxJ£Ax/a)~ is exactly A^2. (See Lemma 3.1 for the definition ofxp.) Furthermore, the

vector ^ belongs to 9)(A^/A) n 9)(A~X/4).

Proof. Let (A¿/4A1/4)~= uh be the polar decomposition. Clearly uh is (-¿)-

homogeneous and £0 belongs to 9)(h), that is, h2 is integrable (see [3]). We thus

conclude that u E 91L and h = A^2q with a unique x G 9H* (Corollary 18 [3], or

§§1,2 of [8]).

For x G 91tn, we compute

(xhUHo) = (xJhtolJhto)

(*& = A]/2ß0 = ^x£f and Proposition 2.2 (i))

= (x/W*(A^A'/4)-|o|yM*(Al/4Al/4)lo)

(2) = (M*(AV4A'/4)-|o|yx/w*(AV4A,/4)lo)

= (M«*(A^4A1/4)-|0|yx/(A^/4A./4)-|oj {u e g^ JxJ  g g^

= {{^y^^\Jxj{^y^)-i0) = (ù^JxJùgfr).

The operator A^4 being (-|)-homogeneous [3], Lemma 2.1 [8] yields

JxJ^% = al£0Jo_i/4(x) y|0.

Therefore, (2) implies

(xh^hQ = {Ax^%\^Jo_i/4(x)^) = (A^0|ya_,/4(x)|0)

= (^|/a_,/4(x)|0) = (a_,/4(x)¿0|^)    (Proposition 2.2 (i))

= (A'/^y = ,/,(*).

Clearly (x/i£0|/i£o) = i//(x) remains valid for all x G 91L so that /i = A^2 = Ax^2.

To complete the proof, it suffices to show ^ G 9)(A'X^A) due to Proposition 2.2

(i) and J9)(A'X/4) = 9)(AX/4). By (1) and the first half of the proof, the right polar

decomposition of (A1/4A^,4)" is

(Ai/4Ai/4)-=Ai/v

We thus have

* = A«/^0 = (A'/4A^4)-M¿0.
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It follows from Lemma 3.2 that we actually have ^ = Ax/4AxJ£u£0 without the

closure sign so that

^ G 9l(Ax/4) = 9)(A~X/4).   Q.E.D.

Corollary 3.4. The set 9H^0 » included in 9j(A'x/4Ax^2A-l/4).

Proof. Lemma 3.3 shows that £o G 9)(A-x/4A^2oA~x/4) so that the corollary

follows from a homogeneity argument. (See Lemma 2.1 [8].)   Q.E.D.

4. Proof of Theorem 23. This section is devoted to the proof of the nontrivial

half of Theorem 2.3. We choose and fix an arbitrary vector | in the cone 9*. Let

<p = u( G 91t* so that we will write £ = ^ henceforth and try to construct an

operator t satisfying ¿L = tJtJ^0. Easy computations for the matrix algebra suggest

that the closure (or the adjoint) of the densely-defined (Corollary 3.4) symmetric

operator A 1/4A^2A~1/4 is an obvious candidate for t. However, it does not seem to

work, the reason being lack of information on a core for the operator

A-1/4A^2A_1/4. (See the very last part of §4.) Instead, we define

t = ((A-'/^A-'/«)!^.,

where 4> is constructed from <p as in Lemma 3.1. We then have

(3) A-'/4A^2A-/4 ç (A-'/4Aj/2A-'/4)* G ((A-^V^-./^J. . ,.

In particular, 91t0'£0 G 9)(t) and it is easy to see

(4) x'A-'/^A-'/y^ = A-'/^A-'/V/lo,       x',y' G %',

by making use of homogeneity.

Proof of Theorem 2.3. For f G 9)(t) and x', v' G 91to', (3) and (4) together

imply

(x'f lA-'/^A-'/^'lo) = (£|A-,/40~,/4*'Vío)

= (tf \x'*y%)   (the definition of t)

= (x't^\y%),

so that x'f G 9)(t) and ix'f = x'ff. Thus, the closedness of t and density of 911g' in

91L' (with respect to the strong operator topology) imply that t is affiliated with 911.

By (3) we have

(5) tt0 = A-x/%,   JtJt0 = JA-x% = Ax%.

(See Lemma 3.3.) For each x' G 9U^, we then compute

(A'/%|A-'/4A¿/2A->/4^0) = (^a-'/VÉo) = &|AV2A-'/4A'/Vx'*£0)

= (gA^/Vx'VÉo) = &|AV2a_,./4(/x'V)É0)

= (i,\Jo_i/4(Jx'*J)%) = {^\Jai/4(Jx'J)Q

= (oi/4(Jx'J)i,,\^)   (Proposition 2.2 (i))

= *(oi/4(Jx'J)) = (Ax/4oi/4(Jx'J)£0\Q   (the definition of ^)

= (Jx'JUQ = (£Jx'£0)    (Proposition 2.2 (i)).
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Thus, the definition of t shows that A1/4^ G 9)(t) and tAx/\ = ^,. These facts

together with (5) complete the proof.    Q.E.D.

5. Concluding remarks. Provided that 9L is a factor of type IIIA, 0 < X < 1, for a

cyclic (and separating) vector ^ in 9*, there always exists an (invertible) bounded

operator t in 91L so that ^ = tJU£0. In fact, due to a result of Connes-Takesaki

(see Theorem 3.3 [6]), there exists a unitary operator u in 9H satisfying <p0 < lxu<pu*

and u(pu* < /2<p0 with some /„ l2 > 0. It is easy to check (Lemma 3.12 [2])

(D(u<pu*): Ekp0)_i/4J(D(u<pu*): Dçp0)_i/4J^ = uJuJ^

so that t = u*(D(u<pu*): D<p0)_,y4 does the job.

We also know the necessary and sufficient condition for a generic £ in 9* to

admit a positive bounded t in 911 satisfying £ = tJtJ£,0 (Proposition 3.1 [8]).

However, our construction of the operator t in §4 does not guarantee the positive

selfadjointness of / (unless A is bounded). The problem of finding a positive

selfadjoint / seems to deserve further investigation.
•
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