PSEUDOHOLOMORPHIC FUNCTIONS WITH NONANTIHOLOMORPHIC CHARACTERISTICS

AKIRA KOOHARA

ABSTRACT. Let $\kappa(z) \in C^{\infty}(\Omega)$ and $\|\kappa\| < 1$. Necessary and sufficient conditions for the system of equations $\partial \bar{f} = \kappa(z) \partial f$ to be locally plentiful are given, and under them a representation of κ also is given.

1. Introduction. Let Ω be a domain in C^n and let $C^{\infty}(\Omega)$ denote the space of infinitely differentiable complex valued functions on Ω . Let a and b be in $C^{\infty}_{(1,0)}(\Omega)$, the space of C^{∞} differential forms of type (1,0) on Ω . Now, consider the R-linear mapping $\nu: C^{\infty}(\Omega) \to C^{\infty}_{(1,0)}(\Omega)$ defined by $\nu(f) = \partial \bar{f} - \bar{f}a - fb$ for $f \in C^{\infty}(\Omega)$, where ∂ denotes the operator $\sum_{j=1}^{n} \partial_j dz_j$ with $\partial_j = \partial/\partial z_j$. Then, Ker ν , the kernel of the map ν , is an R-submodule of $C^{\infty}(\Omega)$.

Quite recently there has been increasing interest in Ker ν , whose elements are called generalized analytic functions of several complex variables (see [5, 6, 7, 8] and references cited in [7]). We call the equation $\nu(f) = 0$ the generalized Cauchy-Riemann equation.

Magomedov and Paramodov [6] introduced the idea of the plentifulness of Ker ν to obtain the integrability conditions of the equation $\nu(f) = 0$ with a = 0 on Ω . When $\dim_R \text{Ker } \nu$ is infinite on Ω , Ker ν is said to be plentiful on Ω . The plentifulness on Ω leads to a complex foliation of codimension one of Ω determined by the form b. The null sets of generalized analytic functions are leaves of this foliation.

In [3] the author treated generalized analytic functions under the conditions on b such that a complex foliation of codimension one of Ω follows from them.

In this paper we are concerned with the R-linear mapping $\alpha \colon C^{\infty}(\Omega) \to C^{\infty}_{(1,0)}(\Omega)$ defined by

$$\alpha(f) = \sum_{i=1}^{n} \left\{ \kappa(z) \partial_{j} f - \partial_{j} \bar{f} \right\} dz_{j}, \quad \text{for } f, \, \kappa \in C^{\infty}(\Omega).$$

Ker α also is an R-submodule of $C^{\infty}(\Omega)$ as the map ν . The equation $\alpha(f) = 0$ was investigated by S. Hitotumatu [2] and by the author [4]. The former used function-theoretic methods and the latter differential equation-theoretical ones.

In [4], given some conditions upon the coefficient κ , we discussed properties of elements of Ker α (which we call pseudoholomorphic functions with characteristic

Received by the editors February 12, 1981 and, in revised form, April 28, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32A30.

Key words and phrases. Plentiful, pseudo-holomorphic function with characteristic, tangential.

 κ) similar to those of holomorphic functions and obtained a local representation theorem of such functions.

Now, by using the results in [6, 7] we can obtain necessary and sufficient conditions for Ker α to be plentiful, because the system of elliptic differential equations $\alpha(f) = 0$ can be reduced to the system of type $\nu(g) = 0$ by $f = g + \bar{\kappa}\bar{g}$. However, the methods and results of [6, 7] are not effectual ones to clarify completely structures of Ker α .

The purpose of this paper is to investigate relations between $\dim_R \operatorname{Ker} \alpha$ and coefficient κ , and to give a local representation of κ in the case where $\operatorname{Ker} \alpha$ is plentiful.

2. Preliminaries and notations. Since Ker α is an R-submodule of $C^{\infty}(\Omega)$, following Magomedov and Paramodov, when $\dim_R \operatorname{Ker} \alpha$ is infinite, we say that Ker α or the system of differential equations

(2.1)
$$\partial_j \bar{f} = \kappa(z) \partial_j f, \qquad j = 1, 2, \ldots, n,$$

is plentiful on Ω .

To attain our objective we need a few assumptions on characteristic κ . First we assume $\|\kappa\| = \sup_{\Omega} |\kappa(z)| < 1$.

If $\partial \kappa$ vanishes on an open subset U in Ω , then, considering the restriction of α to U denoted by $\alpha|_U$, we can see that $\operatorname{Ker}(\alpha|_U)$ is plentiful [4]. Or, if κ vanishes on U, then (2.1) is the Cauchy-Riemann equations on U. By these reasons we may assume that, for nowhere dense subsets E_1 and E_2 of Ω ,

(2.2)
$$\kappa \neq 0 \text{ on } \Omega \setminus E_1, \quad \partial \kappa \neq 0 \text{ on } \Omega \setminus E_2.$$

Let $C^{\infty}_{(p,q)}(\Omega)$ denote the space of C^{∞} differential forms of type (p,q) on Ω . We shall define the *R*-linear mapping α^* of $C^{\infty}(\Omega)$ into $C^{\infty}_{(0,1)}(\Omega)$ by

$$\alpha^*(f) = \sum_{j=1}^n \left\{ \overline{\kappa(z)} \ \overline{\partial_j f} - \overline{\partial} f \right\} d\overline{z}_j = \overline{\alpha(f)}.$$

Then, we may regard α and α^* as R-linear differential operators of first order on $C^{\infty}(\Omega)$.

Let σ be a vector field on U and f in $C^{\infty}(U)$. When $\sigma f = 0$ and $\sigma \bar{f} = 0$ on U, we say that the vector field σ is tangential to f. And when, for every $f \in \text{Ker}(\alpha|_U)$, σ is tangential to f, we say that σ is tangential to $\text{Ker}(\alpha|_U)$.

To seek vector fields tangential to $\operatorname{Ker}(\alpha|_U)$, we need to construct three C-linear mappings β , $\overline{\beta}$ and θ : $C^{\infty}(\Omega) \to C^{\infty}_{(p,q)}(\Omega)$ such that their kernels contain $\operatorname{Ker} \alpha$ and $\operatorname{Ker} \alpha^*$.

Rewriting the map α by using ∂ , we have $\alpha(f) = \kappa(z)\partial f - \partial \bar{f}$ for $f \in C^{\infty}(\Omega)$.

Then we have readily the C-linear mapping $\partial \alpha \colon C^{\infty}(\Omega) \to C^{\infty}_{(2,0)}(\Omega)$ defined by

(2.3)
$$\partial \alpha(f) = \partial \kappa \wedge \partial f \quad \text{for } f \in C^{\infty}(\Omega).$$

We put

$$\beta = \partial \alpha \quad (= \partial \kappa \wedge \partial).$$

Then we obtain

(2.5)
$$\beta(\bar{f}) = \kappa \partial \alpha(f) - \partial \kappa \wedge \alpha(f).$$

We thus define the mapping $\overline{\beta}$: $C^{\infty}(\Omega) \to C^{\infty}_{(0,2)}(\Omega)$ as

(2.6)
$$\overline{\beta}(f) = \overline{\beta(\overline{f})} \quad \text{for } f \in C^{\infty}(\Omega).$$

From the definition of α^* and (2.3)–(2.6) we obtain

(2.7)
$$\operatorname{Ker} \alpha^* = \operatorname{Ker} \alpha$$
, $\operatorname{Ker} \alpha \subset \operatorname{Ker} \beta = \operatorname{Ker} \overline{\beta}$.

Lastly, we want to construct a mapping θ of $C^{\infty}(\Omega)$ into $C^{\infty}_{(2,1)}(\Omega)$. To do this, we need the identity: for $f \in C^{\infty}(\Omega)$

$$\bar{\kappa} \left\{ \bar{\partial} \partial \alpha(f) + \partial \kappa \wedge \partial \alpha^*(f) - \bar{\kappa} \bar{\partial} \beta(\bar{f}) - \bar{\kappa} \bar{\partial} \partial \kappa \wedge \alpha(f) \right\} - \partial \kappa \wedge \partial \bar{\kappa} \wedge \alpha^*(f)$$

$$= \bar{\kappa} (1 - |\kappa|^2) \bar{\partial} \partial \kappa \wedge \partial f + \partial \kappa \wedge \partial \bar{\kappa} \wedge \bar{\partial} f.$$

Then, θ is defined as follows:

(2.8)
$$\theta(f) = \bar{\kappa}(1 - |\kappa|^2)\bar{\partial}\partial\kappa \wedge \partial f + \partial\kappa \wedge \partial\bar{\kappa} \wedge \bar{\partial}f \quad \text{for } f \in C^{\infty}(\Omega),$$
 where $\bar{\partial} = \sum_{j=1}^{n} \bar{\partial}_j d\bar{z}_j, \ \bar{\partial}_j = \partial/\partial\bar{z}_j.$

The three mappings defined above may be regarded as C-linear differential operators of first order on $C^{\infty}(\Omega)$.

It follows from (2.7) and the above identity that

(2.9)
$$\operatorname{Ker} \alpha \subset \operatorname{Ker} \theta.$$

For the purposes of later convenience, we now express (2.4) and (2.8) in terms of coordinates in C^n .

We put

$$\kappa_{i} = \partial_{i}\kappa, \qquad \beta_{ij} = \kappa_{i}\partial_{j} - \kappa_{j}\partial_{i},$$

$$\gamma_{ijk} = (\bar{\partial}_{k}\kappa_{i})\partial_{j} - (\bar{\partial}_{k}\kappa_{j})\partial_{i},$$

$$\theta_{ijk} = \bar{\kappa}(1 - |\kappa|^{2})\gamma_{ijk} + \beta_{ij}(\bar{\kappa})\bar{\partial}_{k}.$$

From now on, the indices i, j and k (with or without subscripts) run over the set $\{1, 2, \ldots, n\}$ unless specifically stated otherwise.

Then we have

$$\beta = \partial \kappa \wedge \partial = \sum_{i < j} \left\{ (\partial_i \kappa) \partial_j - (\partial_j \kappa) \partial_i \right\} dz_i \wedge dz_j,$$

$$\theta = \sum_{i < j, k} \theta_{ijk} dz_i \wedge dz_j \wedge d\bar{z}_k.$$

In the following section we shall prove that on Ω

(2.10)
$$\overline{\partial} \partial \kappa \wedge \partial \kappa = 0, \quad \partial \kappa \wedge \partial \overline{\kappa} = 0.$$

In terms of coordinates of C^n we rewrite the left sides of (2.10).

$$\bar{\partial} \partial \kappa \wedge \partial \kappa = \sum_{i < j, k} \gamma_{ijk}(\kappa) dz_i \wedge dz_j \wedge d\bar{z}_k,$$
$$\partial \kappa \wedge \partial \bar{\kappa} = \sum_{i < j} \beta_{ij}(\bar{\kappa}) dz_i \wedge dz_j.$$

3. Necessary conditions for plentifulness. Let w be a nonconstant pseudoholomorphic function on Ω . By the unique continuation property for pseudoholomorphic functions [4], we have a nowhere dense subset E_3 of Ω such that $\partial w \neq 0$ on $\Omega \setminus E_3$. If we put $E = E_1 \cup E_2 \cup E_3$, $\kappa \neq 0$, $\partial \kappa \neq 0$ and $\partial w \neq 0$ on $\Omega \setminus E$. Since $\partial \kappa \wedge \partial w = 0$ on Ω , for any $z \in \Omega \setminus E$ there is a number i' such that $\partial_{i'} \kappa \neq 0$ and $\partial_{i'} w \neq 0$. Though we must prove (2.10) about each point of $\Omega \setminus E$, it is enough to prove it about a specific point. We may assume without loss of generality that if $0 \in \Omega \setminus E$, then w(0) = 0, $\partial_{\alpha} \kappa(0) \neq 0$ and $\partial_{\alpha} w(0) \neq 0$.

To prove (2.10) we use the following special change of variables on a small neighborhood U of the origin

(3.1)
$$\xi_i = z_i, \quad j = 1, 2, \ldots, n-1, \quad \zeta = w(z).$$

This is nonsingular because w satisfies (2.1).

We put $\partial_j' = \partial/\partial \xi_j$, $\bar{\partial}_j' = \partial/\partial \bar{\xi}_j$, $\Delta = \bar{\kappa}(1 - |\kappa|^2)$ and $\kappa_{i\bar{k}} = \bar{\partial}_k \kappa_i$. Moreover we denote by []" the functions into which ones in [] are transformed by (3.1). If we note (2.9), i.e. $\theta_{ijk}(f) = 0$ for any $f \in \text{Ker } \alpha$, θ_{ijk} are transformed into the following on U:

$$\left[\theta_{ijk} \right]'' = \Delta'' \left\{ \left[\kappa_{i\bar{k}} \right]'' \partial_{j}' - \left[\kappa_{j\bar{k}} \right]'' \partial_{i}' \right\} + \left[\beta_{ij}(\bar{\kappa}) \right]'' \bar{\partial}_{k}' + \left[\theta_{ijk}(\bar{w}) \right]'' \partial_{\bar{k}}'$$

$$\text{for } i \neq n, j \neq n, k \neq n,$$

$$(3.2) \left[\theta_{njk} \right]'' = \left[\Delta \kappa_{n\bar{k}} \right]'' \partial_{j}' + \left[\beta_{nj}(\bar{\kappa}) \right]'' \bar{\partial}_{k}' + \left[\theta_{njk}(\bar{w}) \right]'' \partial_{\bar{\xi}} \quad \text{for } j \neq n, \, k \neq n,$$

$$\left[\theta_{ink} \right]'' = -\left[\Delta \kappa_{n\bar{k}} \right]'' \partial_{i}' + \left[\beta_{in}(\bar{\kappa}) \right]'' \bar{\partial}_{k}' + \left[\theta_{ink}(\bar{w}) \right]'' \partial_{\bar{\xi}} \quad \text{for } i \neq n, \, k \neq n,$$

$$\left[\theta_{ijn} \right]'' = \Delta'' \left\{ \left[\kappa_{i\bar{n}} \right]'' \partial_{j}' - \left[\kappa_{j\bar{n}} \right]'' \partial_{i}' \right\} + \left[\theta_{ijn}(\bar{w}) \right]'' \partial_{\bar{\xi}} \quad \text{for } i \neq n, \, j \neq n.$$

LEMMA 1. If Ker α has an element W linearly independent of w, then the vector fields θ_{ijk} are tangential to w.

PROOF. It is sufficient to show $\theta_{ijk}(\overline{w}) = 0$. Assume there are a point z' and numbers i', j', k' such that $\theta_{i'j'k'}(\overline{w}) \neq 0$ at z'. We may regard z' as the origin and, shrinking U mentioned above if necessary, assume that $\theta_{i'j'k'}(\overline{w}) \neq 0$ on U. Using the coordinates introduced in (3.1), we obtain, on the image of U by (3.1), $\partial_j' W'' = 0$, $\bar{\partial}_j' W'' = 0$ ($j = 1, \ldots, n-1$) and $\partial_{\bar{\xi}} W'' = 0$, where we use the relation derived from (3.2), $\theta_{i'j'k'}(W) = [\theta_{i'j'k'}(w)]'' \partial_{\bar{\xi}} W''$. Therefore we see W'' depends only on ζ and is holomorphic at 0.

However, since $\alpha(W) = 0$, $[\kappa \partial_n w]''(\partial_{\zeta} W'' - \partial_{\overline{\zeta}} \overline{W}'') = 0$, and hence $\partial_{\zeta} W'' = \partial_{\overline{\zeta}} \overline{W}''$. Thus we obtain W = aw + b on U, where a > 0 is a constant and $b \in C$, which contradicts the assumption.

Let S be any subset of Ω . The set N(S) of those vector fields on S which are tangential to w is a $C^{\infty}(S)$ -submodule of the $C^{\infty}(S)$ -module M(S) consisting of all vector fields on S.

If $f \in \text{Ker } \alpha$ is nonconstant, nonempty level sets $\{z \in \Omega | f(z) = \text{const.}\}$ are (n-1)-dimensional complex submanifolds except the set of nonordinary points of f[2].

By virtue of (2.7) every vector field β_{ij} is tangential to Ker α . If $0 \in \Omega \setminus E$, letting β_i denote β_{in} ($i = 1, \ldots, n-1$), we see from the above-mentioned that $\{\beta_i, \overline{\beta}_i\}$ span N(U).

We say Ker α is trivial when it is C itself.

LEMMA 2. Under the same assumption as in Lemma 1, (2.10) holds on Ω .

PROOF. Lemma 1 shows $\theta_{ijk} \in N(\Omega)$. Assume $0 \in \Omega \setminus E$. Then θ_{ijk} can be written by linear combinations of β_s , $\overline{\beta}_s$ (s = 1, ..., n - 1) with coefficients in $C^{\infty}(U)$. If a_{ijk}^s , b_{ijk}^s denote the coefficients of β_s , $\overline{\beta}_s$, we have:

(3.3) For
$$1 \le i < j \le n - 1$$
 and each k , $a_{ijk}^s = 0$, $1 \le s \le n - 1$, $s \ne i, j$, $\kappa_n a_{ijk}^i = \Delta \kappa_{j\bar{k}}$, $\kappa_n a_{ijk}^j = -\Delta \kappa_{i\bar{k}}$, $\sum_{s=1}^{n-1} a_{ijk}^s \kappa_s = 0$. For $1 \le i < j = n$ and each k , $a_{ink}^s = 0$, $1 \le s \le n - 1$, $s \ne i$, $\kappa_n a_{ink}^i = \Delta \kappa_{n\bar{k}}$, $\kappa_i a_{ink}^i = \Delta \kappa_{i\bar{k}}$. For $1 \le k \le n - 1$ and each i, j , $b_{ijk}^{s'} = 0$, $1 \le s' \le n - 1$, $s' \ne k$, $\bar{\kappa}_k b_{ijk}^k = 0$, $\bar{\kappa}_n b_{ijk}^k = -\beta_{ij}(\bar{\kappa})$.

For k = n and each $i, j, \beta_{ij}(\bar{\kappa}) = 0$ by $\beta_{ijn}^{s'} = 0, 1 \le s' \le n - 1$.

If $k \neq n$, from (3.5) we need to consider the following two cases.

Case 1. For all k, $1 \le k \le n-1$, $\kappa_k = 0$ on U.

Case 2. For some k', $1 \le k' \le n-1$ and some point $z' \in U$, $\kappa_{k'} \ne 0$ at z'.

We prove the first part of (2.10) only in Case 1. Let there be an open subset V of U and some i', j' (i' < j') such that $\beta_{i'j'}(\bar{\kappa}) \neq 0$. Then, $\beta_i = \partial_i$, $i = 1, \ldots, n-1$, and so

$$\bar{\partial}_k = \left[\beta_{i'j'}(\bar{\kappa}) \right]^{-1} \left\{ \theta_{i'j'k} + (\Delta \kappa_{j'\bar{k}}) \beta_{i'} \right\} \in N(V).$$

Hence N(V) = M(V), which contradicts the nontrivial Ker α .

We next prove the second part of (2.10). From (3.3) and (3.4) we have $\gamma_{ijk} = \kappa_{i\bar{k}}\kappa_j - \kappa_{i\bar{k}}\kappa_i = 0$ on U, which completes the proof.

COROLLARY. Let U be an open subset of Ω . If on U either (1) $\partial \kappa \wedge \partial \bar{\kappa} \neq 0$, $\bar{\partial} \partial \kappa \wedge \partial \kappa = 0$ or (2) $\partial \kappa \wedge \partial \bar{\kappa} = 0$, $\bar{\partial} \partial \kappa \wedge \partial \kappa \neq 0$, then Ker α is trivial.

PROOF. Let $w \in \text{Ker } \alpha$ be nonconstant.

Case (1). $\bar{\partial}\partial\kappa \wedge \partial\kappa = 0$ leads to $\theta(w) = \partial\kappa \wedge \partial\bar{\kappa} \wedge \bar{\partial}w$. By (2.7) and (2.9), $\bar{\partial}w = 0$ on U. w is constant.

Case (2). $\partial \kappa \wedge \partial \bar{\kappa} = 0$ leads to $\theta(w) = \Delta \bar{\partial} \partial \kappa \wedge \partial w$. Since $\partial \kappa \wedge \partial w = 0$, $\theta(w) = c\Delta \bar{\partial} \partial \kappa \wedge \partial \kappa$ for some function $c \in C^{\infty}(U)$, and hence $\bar{\partial} \partial \kappa \wedge \partial \kappa = 0$ on U, which contradicts the assumption.

THEOREM 1. For the system (2.1) to be plentiful on Ω , it is necessary that the characteristic κ fulfill the condition (2.10) on Ω .

- 4. Sufficient conditions for plentifulness. We show the local validity of the converse of Theorem 1. As is readily verified, the first half of (2.10) is sufficient for the (1, 0)-form $\sum \kappa_j dz_j$ to determine a complex foliation of codimension one of Ω . The converse of this is not always valid (see, e.g. Example (ii) below).
- LEMMA 3. For a function $\kappa \in C^{\infty}(\Omega)$ satisfying $\partial \kappa \neq 0$ and (2.10) on Ω , there is locally a holomorphic function h such that $dh \wedge \partial \kappa = 0$, $dh \wedge \partial \bar{\kappa} = 0$ and $dh \neq 0$.

PROOF. If we put $\omega = \partial \kappa$, by the first half of (2.10) $\bar{\partial}\omega = \rho \wedge \omega$ for a form $\rho \in C^{\infty}_{(0,1)}(\Omega)$. From this $\bar{\partial}\rho \wedge \omega = 0$, $\omega \neq 0$ leads to $\bar{\partial}\rho = 0$ on Ω , so that for each point of Ω there are a neighborhood U of that point and a function $g \in C^{\infty}(U)$ such that $\bar{\partial}g = \rho$. Putting $\tau = \omega \exp(-g)$, we see $\bar{\partial}\tau = 0$, which shows τ is a holomorphic form. By using $\omega = \tau \exp g$, we have $\partial g \wedge \tau + d\tau = 0$, and hence

$$(4.1) \tau \wedge d\tau = 0, \quad \tau \neq 0 \text{ on } U.$$

Let H(U) denote the algebra of all holomorphic functions on U. We define $\tau = \sum \tau_j dz_j$ and $D_{ij} = \tau_i \partial_j - \tau_j \partial_i$, $\tau_j \in H(U)$. Then, by (4.1) we have a function h holomorphic on a neighborhood $V \subset U$ such that $dh \neq 0$ and $\tau \wedge dh = 0$ (i.e. D_{ij} is tangential to h). Thus the proof is complete.

LEMMA 4 [4, THEOREM 20]. Assume that κ satisfies (2.10) and $\partial \kappa \neq 0$ on Ω . Then (2.1) is locally reduced to the equation of one variable

$$\partial_{\bar{t}}F = \overline{K(t)\partial_t F}, \qquad |K| < 1,$$

where K(t) is defined and of class $C^{\infty}(h(V))$.

PROOF. We have a holomorphic function h satisfying the conditions of Lemma 3 on an open subset V of Ω . We may assume h is the coordinate function z_n . Since $\partial \kappa \wedge dz_n = 0$, $\partial \bar{\kappa} \wedge dz_n = 0$, κ and $\bar{\kappa}$ are holomorphic in the other coordinates when fixing z_n , and so is a function of z_n alone. Then $\kappa = K(z_n)$ and, for any $f \in \text{Ker } \alpha$, $\partial f \wedge dz_n = \partial \bar{f} \wedge dz_n = 0$, so $f = F(z_n)$. Thus equation (4.2) is obtained. We now take a disk $\delta \subset h(V)$. Then we have

LEMMA 5. Equation (4.2) is plentiful on δ .

PROOF. Let Δ_i (i=1,2) be disks concentric with δ such that $\delta \subset \subset \Delta_1 \subset \subset \Delta_2$. We take a function $K_1(t) \in C^{\infty}$ on C as follows: $K_1(t)$ equals one on δ and zero outside Δ_1 . Besides, it fulfills $0 < K_1(t) < 1$. Putting $L(t) = K_1(t)K(t)$, we have the equation

$$\partial_t G = \overline{L(t)} \ \overline{\partial_t G} \ .$$

Consider the Dirichlet problem of (4.3) with the boundary conditions Re G(t) = g(t) on $\partial \Delta_2$, and $G(t_0) = 0$, $t_0 \in \Delta_2$, where g(t) is a given real valued continuous function on Δ_2 . This problem is solvable [1]. The plentifulness on δ of (4.2) is derived from the fact that $\dim_R C(\partial \Delta_2)$ is infinite and from the unique continuation property for solutions of equation (4.3). Thus we have the following

THEOREM 2. If the characteristic κ satisfies (2.10) on Ω , then Ker α is locally plentiful.

Using Lemma 3 and the proof of Lemma 4, we have a local representation of κ .

THEOREM 3. There are locally a holomorphic function h and $K(t) \in C^{\infty}(\text{img } h)$, t = h(z), such that $\kappa = K \circ h$, $dh \neq 0$ and $K \neq 0$ if and only if κ satisfies (2.10) and $\partial \kappa \neq 0$ on Ω .

EXAMPLES. (i) Consider $\kappa = \phi(z) + \overline{\psi(z)}$, where ϕ and ψ are holomorphic and $d\phi \wedge d\psi = 0$ on Ω . Then $\partial \kappa \wedge \partial \bar{\kappa} \neq 0$, even though $\bar{\partial} \partial \kappa \wedge \partial \kappa = 0$, so Ker α is trivial by the corollary to Lemma 2.

(ii) We consider (2.1) on a small neighborhood U of the origin in C^2 such that w(z) is well defined on U by the following equation:

(4.4)
$$(\overline{w} + z_1 + z_2)^2 - 2w = 2z_2, \quad w(0) = 0$$

Putting $\kappa = w(z) + \bar{z}_1 + \bar{z}_2$ (restricting *U* further if necessary) we can observe that Ker α is generated only by w(z) (see also [4]). A simple computation shows that $\partial_1 w - \partial_2 w \neq 0$ on *U*, and so it is easy to obtain $\partial \kappa \wedge \partial \bar{\kappa} = (\partial_1 w - \partial_2 w) dz_1 \wedge dz_2 \neq 0$. Moreover we can also show

$$(4.5) \bar{\partial} \partial \kappa \wedge \partial \kappa \neq 0 \text{on } U.$$

- (iii) We regard the function w defined by (4.4) as $\kappa(z)$. Evidently we have $\partial \kappa \wedge \partial \overline{\kappa} = 0$ and (4.5) on U. By the corollary to Lemma 2 Ker α is trivial.
- (iv) Global plentifulness is not always true, even though κ satisfies (2.10) on Ω . The following example shows global plentifulness is valid.

If we take $\kappa = (2/3)(z_1^2 + z_2)$ on $\Omega = \{z \in C^2: |z_1^2 + z_2| < 1\}$, then we have easily, for any nonnegative integers m,

$$w = (z_1^2 + z_2)^{m+1} / (m+1) + (2/3)(\bar{z}_1^2 + \bar{z}_2)^{m+2} / (m+2).$$

It is trivial for Ker α to be plentiful on Ω .

In conclusion we are in a position to state relations between $\dim_R \operatorname{Ker} \alpha$ and κ . We define the following notations: $d = \dim_R \operatorname{Ker} \alpha$, $\theta_1 = \partial \kappa \wedge \partial \bar{\kappa}$ and $\theta_2 = \bar{\partial} \partial \kappa \wedge \partial \kappa$.

- (1) If $d \ge 3$, $\theta_1 = \theta_2 = 0$ on Ω .
- (2) If $\theta_1 = \theta_2 = 0$ on Ω , $d = +\infty$ locally.
- (3) If there is an open subset U of Ω on which either $\theta_1 \neq 0$, $\theta_2 = 0$ or $\theta_1 = 0$, $\theta_2 \neq 0$, then d = 1 (Ker α is trivial).
 - (4) If there is a point of Ω at which $\theta_1 \neq 0$, $\theta_2 \neq 0$, then $d \leq 2$.

ACKNOWLEDGMENT. The author expresses his sincere thanks to the referee for his helpful advice, especially for indicating a way to prove Lemma 4 without quoting Theorem 20 [4].

REFERENCES

- 1. L. Bers and L. Nirenberg, On a representation theorem for linear elliptic system with discontinuous coefficients and applications, Convegno Internazionale sulle Equazioni alle Derivate Parziali (Rome, 1955), pp. 111-140.
- 2. S. Hitotumatu, On quasi-conformal functions of several complex variables, J. Math. Mech. 8 (1959), 77-94.
- 3. A. Koohara, Similarity principle of the generalized Cauchy-Riemann equations for several complex variables, J. Soc. Japan 23 (1971), 213-249.
- 4. _____, Representation of pseudo-holomorphic functions of several complex variables, J. Soc. Japan 28 (1976), 257-277.

- 5. Le-Hung-Son, Fortsetzungssätze vom Hartogsschen Typ für verallgemeinerte analytische Funktionen mehrerer komplexer Variabler, Math. Nachr. 93 (1979), 177-186.
- 6. G. A. Magomedov and V. P. Paramodov, Generalized analytic functions of several variables, Math. USSR-Sb. 35 (1979), 181-205.
- 7. L. G. Mihailov, On compatibility conditions and the manifold of solutions of the generalized Cauchy-Riemann system in several variables, Soviet Math. Dokl. 20 (1979), 1430-1435.
- 8. W. Tutschke, Partielle komplexe Differentialgleichungen in einer und in mehreren komplexen Variablen, Hochschulbücher für Math. 82, VEB Deutscher Verlag, Berlin, 1977.

DEPARTMENT OF MATHEMATICS, HIMEJI INSTITUTE OF TECHNOLOGY, SHOSHA 2167, HIMEJI, 671-22, JAPAN