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PSEUDOHOLOMORPHIC FUNCTIONS WITH

NONANTTHOLOMORPHIC CHARACTERISTICS

AKIRA KOOHARA

Abstract. Let k(z) e C°°(S2) and ||k|| < 1. Necessary and sufficient conditions for

the system of equations of — *(z)df to be locally plentiful are given, and under

them a representation of k also is given.

1. Introduction. Let ß be a domain in C" and let C°°(ß) denote the space of

infinitely differentiable complex valued functions on ß. Let a and b be in C("0)(ß),

the space of C°° differential forms of type (1, 0) on ß. Now, consider the /?-linear

mapping v: C°°(ß) -h> C(?fi)(iï) defined by v(f) = of - fa - fb for / G C°°(ß),

where 8 denotes the operator 2"_, djdzj with 9, = d/dzj. Then, Ker v, the kernel of

the map v, is an Ä-submodule of C °°(ß).

Quite recently there has been increasing interest in Ker v, whose elements are

called generalized analytic functions of several complex variables (see [5, 6, 7, 8]

and references cited in [7]). We call the equation v(f) = 0 the generalized Cauchy-

Riemann equation.

Magomedov and Paramodov [6] introduced the idea of the plentifulness of Ker v

to obtain the integrability conditions of the equation v(f) = 0 with a = 0 on 0.

When dimfi Ker v is infinite on ß, Ker v is said to be plentiful on ß. The

plentifulness on ß leads to a complex foliation of codimension one of ß deterrnined

by the form b. The null sets of generalized analytic functions are leaves of this

foliation.

In [3] the author treated generalized analytic functions under the conditions on b

such that a complex foliation of codimension one of ß follows from them.

In this paper we are concerned with the R-linear mapping a: C°°(ß) —* C(~0)(ß)

defined by

«(/) = 2 [K(z)9jf - dj) dzp    for/, k E C-(Q).

Ker a also is an i?-submodule of C °°(ß) as the map v. The equation a(f) = 0

was investigated by S. Hitotumatu [2] and by the author [4]. The former used

function-theoretic methods and the latter differential equation-theoretical ones.

In [4], given some conditions upon the coefficient k, we discussed properties of

elements of Ker a (which we call pseudoholomorphic functions with characteristic
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k) similar to those of holomorphic functions and obtained a local representation

theorem of such functions.

Now, by using the results in [6, 7] we can obtain necessary and sufficient

conditions for Ker a to be plentiful, because the system of elliptic differential

equations a(f) = 0 can be reduced to the system of type v(g) = 0 by/ = g + icg.

However, the methods and results of [6, 7] are not effectual ones to clarify

completely structures of Ker a.

The purpose of this paper is to investigate relations between dimÄ Ker a and

coefficient k, and to give a local representation of k in the case where Ker a is

plentiful.

2. Preliminaries and notations. Since Ker a is an Ä-submodule of C °°(ß), follow-

ing Magomedov and Paramodov, when dimÄ Ker a is infinite, we say that Ker a

or the system of differential equations

(2.1) d,/=K(z)8//,      y = l,2,...,n,

is plentiful on ß.

To attain our objective we need a few assumptions on characteristic k. First we

assume ||k|| = supn|ic(z)| < 1.

If 9/c vanishes on an open subset U in ß, then, considering the restriction of a to

U denoted by a\u, we can see that Ker(a| v) is plentiful [4]. Or, if k vanishes on U,

then (2.1) is the Cauchy-Riemann equations on U. By these reasons we may

assume that, for nowhere dense subsets Ex and E2 of ß,

(2.2) k =£ 0   on ß \ £,,       ox ¥= 0   on ß \ E2.

Let C("9)(ß) denote the space of C °° differential forms of type (/», q) on ß.

We shall define the /Minear mapping a* of C°°(ß) into C(0°X)(tt) by

«*(/) = 2 {^) V - V) dzj, - ~alj).
j=i

Then, we may regard a and a* as /?-linear differential operators of first order on

C°°(ß).

Let a be a vector field on U and / in C °°( U). When of = 0 and of = 0 on U, we

say that the vector field o is tangential to/ And when, for every/ G Ker(a| v), o is

tangential to/ we say that o is tangential to Ker(a| v).

To seek vector fields tangential to Ker(a| v), we need to construct three C-linear

mappings ß, ß and 0: C°°(ß) —» C("9)(ß) such that their kernels contain Ker a and

Ker a*.

Rewriting the map a by using 8, we have a(f) = k(z)3/ — 3/for/ G C°°(ß).

Then we have readily the C-linear mapping 9a: C°°(ß) -* C("0)(ß) defined by

(2.3) 9a(/) = 9«A3/   for/ G C°°(0).

We put

(2.4) /? = 9a    (=3kA9).

Then we obtain

(2.5) Blf) -k8«</)- 3k A «(/)•



PSEUDOHOLOMORPHJC FUNCTIONS 219

We thus define the mapping ß: C°°(ß) -► C(£2)(ß) as

(2.6) ßU)=~ßÜ)    for/GC~(ß).

From the definition of a* and (2.3)-(2.6) we obtain

(2.7) Ker a* = Ker a,       Ker a E Ker ß = Ker ß.

Lastly, we want to construct a mapping 0 of C°°(ß) into C£X)(Çï). To do this, we

need the identity: for/ G C°°(ß)

¡c{99a(/) + 9(c A9«*(/) - *¥(/) - k33k A«(/)} - 3k A 9ic A«*(/)

= ic(l - |k|2)33k A 9/ + 9<c A 9ic A9/

Then, 6 is defined as follows:

(2.8) 0(f) = ¡c(l - |k|2)33k A 3/ + 3k A 9k AS/   for/ G C °°(ß),

where 9 = 2;_, 9,-iß,-, 3,. = 9/9z,..

The three mappings defined above may be regarded as C-hnear differential

operators of first order on C °°(ß).

It follows from (2.7) and the above identity that

(2.9) Ker a c Ker 9.

For the purposes of later convenience, we now express (2.4) and (2.8) in terms of

coordinates in C.

We put

Ki = 9,<c,       ßij = K,9y. - k,3,.,

lijk = (9*K,-)a; - (9^)9,,

9,» = «(i - \<2hiJk + ßiA^flk-

From now on, the indices i,j and k (with or without subscripts) run over the set

{1, 2, . . ., «} unless specifically stated otherwise.

Then we have

ß = 9k A 9= 2 {(diK)dj - (9,k)3,} dzt A dzp
i<j

0=2   9IJkdzt A dr, A dzk.
• <j,k

In the following section we shall prove that on ß

(2.10) 99k A 9k = 0,       3k A 3k = 0.

In terms of coordinates of C we rewrite the left sides of (2.10).

33k A 3k =   2   y¡jk(K) dz¡ A dzj A dzk,
i<j,k

3k A 3k = 2 t%A") dh A dzj.
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3. Necessary conditions for plentifulness. Let w be a nonconstant pseudoholomor-

phic function on ß. By the unique continuation property for pseudoholomorphic

functions [4], we have a nowhere dense subset E3 of ß such that 3vv ̂  0 on ß \ Ey

If we put E = Ex u E2 u E3, k ¥= 0, 3k ¥= 0 and 3vv ̂ = 0 on ß \ E. Since 3k A 3w

= 0 on ß, for any z G ß \ E there is a number /' such that 3,.k ¥= 0 and 3,w =£ 0.

Though we must prove (2.10) about each point of ß \ E, it is enough to prove it

about a specific point. We may assume without loss of generality that if 0 G ß \ E,

then w(0) = 0, 3„k(0) =£ 0 and 9„w(0) *= 0.

To prove (2.10) we use the following special change of variables on a small

neighborhood U of the origin

(3.1) %-Zj,      /= 1,2,...,«- 1,   t = w(z).

This is nonsingular because w satisfies (2.1).

We put dj = 9/9£,, 9j = 9/9^., A = ic(l - |k|2) and Kik = dkK¡. Moreover we

denote by [ ]" the functions into which ones in [ ] are transformed by (3.1). If we

note (2.9), i.e. 9iJk(f) = 0 for any/ G Ker a, 6ijk are transformed into the following

on U:

[9ijk]" = A"{[k„-]"9; -[k„-]"9;} +[ßij(K)\% +[9iJk(w-)]"%

for i =£ n,j ¥= n, k =£ n,

(3.2) [9+Y -[A«^]»^ +[fK¿i)]"\+[9nfk{*)Y*i   for/*«,**/»,

[ 9ink\" = -[ Ak„,-]"9; + [ A„(k)]"X + [9ink(w)] "3f   for i * n, k * n,

[9iJn]" = A"{ [k/ä]"3; - [k,„-]"3;} + [^,(w)]"8f   for i * n,j * n.

Lemma 1. If Ker a has an element W linearly independent of w, then the vector

fields 9ijk are tangential to w.

Proof. It is sufficient to show 9¡jk(w) = 0. Assume there are a point z' and

numbers /",/, k! such that 9rj,k,(w) ̂  0 at z'. We may regard z' as the origin and,

shrinking U mentioned above if necessary, assume that 9¡yk,(w) ̂  0 on U. Using

the coordinates introduced in (3.1), we obtain, on the image of U by (3.1),

3/ W" = 0, 3j W" = 0 (j = l, . . . , « - l) and 3f- W" = 0, where we use the relation

derived from (3.2), 9i7k,(W) = [0i7k.(w)]"ocW". Therefore we see W" depends only

on f and is holomorphic at 0.

However, since a(W) = 0, [KOnw]"(dtW" - d^W") = 0, and hence otW" =

dçW". Thus we obtain W = aw + b on U, where a > 0 is a constant and b E C,

which contradicts the assumption.

Let S be any subset of ß. The set N(S) of those vector fields on S which are

tangential to w is a C°(S)-submodule of the C°c(5')-module M(S) consisting of all

vector fields on S.

If / G Ker a is nonconstant, nonempty level sets {z G ß|/(z) = const.} are

(n — l)-dimensional complex submanifolds except the set of nonordinary points of

/[2]-
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By virtue of (2.7) every vector field ßtj is tangential to Ker a. If 0 G fi \ E, letting

ß, denote ßin (i = 1, . . . , n — 1), we see from the above-mentioned that { /?,, fi¡)

span JV( U).

We say Ker a is trivial when it is C itself.

Lemma 2. Under the same assumption as in Lemma 1, (2.10) holds on fi.

Proof. Lemma 1 shows 9ijk E N(Q). Assume 0 G fi \ E. Then 9ijk can be written

by linear combinations of ßs, ßs (s = 1, . . . , n — 1) with coefficients in C°°(U). If

a¡jk, bfJk denote the coefficients of ßs, ßs, we have:

For 1 < i <j < n — 1 and each k,

a¡Jk = 0,       l<s<n-l,s¥' i,j,
(3.3)

Kna'ijk ~~ ̂ Kjk'     Knaijk-^Kik>        2¿    aijkKs ~ 0-
i-1

For 1 < i <j = n and each k,

(3.4) a¿* = 0,        1 <s <* - 1,3 ¥>i,

Kna'ink  = ^nk, KiaL  = &Kik-

For 1 < k < n - 1 and each i,j,

(3.5) bt% - 0,       1 < s' < n - 1, s' * k,

"ktfk = 0,       KnbkJk = -/%(£).

For k = n and each i,/, y30(K) = 0 by ß*Jn = 0, 1 < s' < n - 1.

If k =£ n, from (3.5) we need to consider the following two cases.

Case 1. For all k, 1 < k < n - 1, k* = 0 on U.

Case 2. For some k', 1 < k' < n — 1 and some point z' G U, Kk, * 0 at z'.

We prove the first part of (2.10) only in Case 1. Let there be an open subset V of

U and some /', / (/' </) such that ßv(ic) ¥= 0. Then, /}, = 9„ i = 1, . . . , n — 1,

and so

9* = [ AyOOrH/* + (%*)&} e AW
Hence ./V(K) = M(V), which contradicts the nontrivial Ker a.

We next prove the second part of (2.10). From (3.3) and (3.4) we have yiJk = k^k,

— KJkKj = 0 on U, which completes the proof.

Corollary. Let U be an open subset of il. If on U either (1) 9k A 9ic * 0,

99k A 9k = 0 or (2) 9k A 9k = 0, 99k A 9k * 0, then Ker a is trivial.

Proof. Let w E Ker a be nonconstant.

Case (1). 99k A 9k = 0 leads to 9(w) = 9k A 9ic A 9h>. By (2.7) and (2.9), 9w = 0

on U. w is constant.

Case (2). 9k A 9k = 0 leads to 9(w) = A99k A 9w. Since 9k A 9w = 0, 9(w) =

cA99k A 9k for some function c E CX(U), and hence 99k A 9k = 0 on U, which

contradicts the assumption.

Theorem 1. For the system (2.1) to be plentiful on fi, it is necessary that the

characteristic k fulfill the condition (2.10) on fi.
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4. Sufficient conditions for plentifulness. We show the local validity of the

converse of Theorem 1. As is readily verified, the first half of (2.10) is sufficient for

the (1, 0)-form 2 icjdzj to determine a complex foliation of codimension one of fi.

The converse of this is not always vahd (see, e.g. Example (ii) below).

Lemma 3. For a function k E C^fi) satisfying 9k * 0 and (2.10) on fi, there is

locally a holomorphic function h such that dh A 9k = 0, dh A 9ic = 0 and dh ^ 0.

Proof. If we put « = 9k, by the first half of (2.10) 9« = p A " for a form

p G C^,)(ß). From this 3pA« = 0,«^0 leads to 9p = 0 on ß, so that for each

point of fi there are a neighborhood U of that point and a function g G C °°( U)

such that 9g = p. Putting t = to exp(-g), we see 9t = 0, which shows t is a

holomorphic form. By using u> = t exp g, we have og /\t + dr = 0, and hence

(4.1) t A dr = 0,   t * 0       ont/.

Let 7/(£/) denote the algebra of all holomorphic functions on U. We define

t = 2 Tjdzj and Z)y = t,9, - t,9„ t, G H(U). Then, by (4.1) we have a function «

holomorphic on a neighborhood Cci/ such that dh ¥=0 and r /\dh = 0 (i.e. D¡j

is tangential to h). Thus the proof is complete.

Lemma 4 [4, Theorem 20]. Assume that k satisfies (2.10) and 9k * 0 on fi. 77je/i

(2.1) ii locally reduced to the equation of one variable

(4.2) drF= K(t)o,F,       \K\<1,

where K(t) is defined and of class C°°(h(V)).

Proof. We have a holomorphic function h satisfying the conditions of Lemma 3

on an open subset V of fi. We may assume h is the coordinate function z„. Since

9k A dzn = 0, 9ic A dzn = 0, k and ¡c are holomorphic in the other coordinates

when fixing z„, and so is a function of z„ alone. Then k = K(zn) and, for any

/ G Ker a, 9/A dzn = 9/A dzn = 0, so/ = F(z„). Thus equation (4.2) is obtained.

We now take a disk 8 EE h(V). Then we have

Lemma 5. Equation (4.2) is plentiful on 8.

Proof. Let A, (i = 1, 2) be disks concentric with 8 such that 8 c C A, c C A2.

We take a function Kx(t) E C °° on C as follows: Kx(t) equals one on 8 and zero

outside A,. Besides, it fulfills 0 < Kx(t) < 1. Putting L(t) = Kx(t)K(t), we have the

equation
_

(4.3) 9,-C = L(t) 9, G .

Consider the Dirichlet problem of (4.3) with the boundary conditions Re G(t) =

g(t) on 9A2, and G(t0) = 0, t0 E A2, where g(t) is a given real valued continuous

function on Aj. This problem is solvable [1]. The plentifulness on 8 of (4.2) is

derived from the fact that dimÄ C(dA2) is infinite and from the unique continuation

property for solutions of equation (4.3). Thus we have the following

Theorem 2. If the characteristic k satisfies (2.10) on fi, then Ker a is locally

plentiful.

Using Lemma 3 and the proof of Lemma 4, we have a local representation of k.
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Theorem 3. There are locally a holomorphic function h and K(t) E C°°(img h),

t = h(z), such that k = K ° h, dh ^ 0 and K * 0 if and only if k satisfies (2.10) and

9k * 0 on fi.

Examples, (i) Consider k = <p(z) + i|/(z), where <j> and i// are holomorphic and

d<¡> A <fy = 0 on fi. Then 9k A 9ic * 0, even though 33k A 3k = 0, so Ker a is

trivial by the corollary to Lemma 2.

(ii) We consider (2.1) on a small neighborhood U of the origin in C2 such that

w(z) is well defined on U by the following equation:

(4.4) (w +z, + z2)2 - 2w = 2z2,       w(0) = 0.

Putting k = w(z) + z, + z2 (restricting (7 further if necessary) we can observe

that Ker a is generated only by w(z) (see also [4]). A simple computation shows

that 3,w — 92w =£ 0 on U, and so it is easy to obtain 9k A 9k = (9,w — 92vv) dzx A

dz2 ¥= 0. Moreover we can also show

(4.5) 99k A 9k ¥= 0   on U.

(iii) We regard the function w defined by (4.4) as k(z). Evidently we have

9k A 9k = 0 and (4.5) on U. By the corollary to Lemma 2 Ker a is trivial.

(iv) Global plentifulness is not always true, even though k satisfies (2.10) on fi.

The following example shows global plentifulness is valid.

If we take k = (2/3)(z2 + z^ on fi = (z G C2: \z\ + z2\ < 1}, then we have

easily, for any nonnegative integers m,

w = (z2 + z2)m + I/ (m + 1) + (2/3)(z2 + z2)m+2/(m + 2).

It is trivial for Ker a to be plentiful on fi.

In conclusion we are in a position to state relations between dimÄ Ker a and k.

We define the following notations: d = dimÄ Ker a, 9X = 9k A 9k and 92 = 99k A

9k.

(1) If d > 3, 9X = 92 = 0 on fi.

(2) If 9X = 92 = 0 on fi, d = +00 locally.

(3) If there is an open subset U of fi on which either 9X * 0, 92 = 0 or 9X = 0,

92 =£ 0, then d = 1 (Ker a is trivial).

(4) If there is a point of fi at which 9X ̂ 0,92¥= 0, then d < 2.

Acknowledgment. The author expresses his sincere thanks to the referee for his
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