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A NONVARIATIONAL SECOND ORDER ELLIPTIC OPERATOR

WITH SINGULAR ELLIPTIC MEASURE

LUCIANO MÓDICA, STEFANO MORTOLA AND SANDRO SALSA

Abstract. We exhibit an example which proves that the elliptic measure for a

second-order operator of the form 2";- X OaD» with continuous coefficients can be

singular with respect to the surface measure on the boundary of a smooth

two-dimensional domain.

1. Introduction. In the papers [2] and [4], examples of singular elliptic measures

for second-order operators in divergence form are given. In this note, following the

ideas contained in [4], we exhibit an analogous example in the nonvariational case.

We recall the definition of elliptic measure. Let fi be a bounded subset of R"

with smooth boundary 9fi and L = 2"j_, a^Dy, a uniformly elliptic operator with

continuous coefficients in ß. It is well known that, for every g G C(9ß), there exists

a unique solution u G W2¿(ü) n C(fi) of the problem

Lu = 0   in fi,       u = g   on 9fi.

The classical maximum principle and the Riesz representation theorem imply

that for each P E fi there exists a Borel measure on 9fi, u>[ (the L-elhptic measure

evaluated at P), such that the following formula holds:

u(P)= [ g(o)du[(o).
•'an'aa

On the other hand, by a result of Pucci and Alexandrov (see [1] and [6]), the

solution, vanishing on the boundary, of the equation Lv = / / G T. "(fi), satisfies

the following estimate

(1.1) max|o(P)|<c||/||L.(a)
Pea

where the constant c depends only on the ellipticity constants and the geometry of

fi.
Notice that, by a result of Talenti [7], in dimension two we have the stronger

inequality

(1-2) \\v\\w^a)<c\[f\\LHa),

where c depends on the same parameters as before.

Pucci-Alexandrov's theorem implies the existence of the Green's function

G(P; Q), such that G(P; ■) E L"/("-1)(fi) for every fixed P and v(P) =

/a G(P; Q)f(Q) dQ.
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In the case of smooth coefficients, the divergence theorem gives the connection

between the Green's function and the 7,-elhptic measure; we have

dwfa)-  2  ay{o)VtDG(P; o) do
<V=i

where v = (vx, v2, ..., vn) is the inward unit normal to 9fi, and do is the usual

(n — l)-dimensional surface measure on 9ß.

Furthermore we recall that in fi \ {P}, G(P, ■) satisfies the equation L*G(P; •)

= 0, where L* is the adjoint operator of L; formally L*u = 2"j_, Dy(a¡jü).

2. Main lemmas. In this section, B is a bounded C°° domain in the upper

half-plane R2 adjacent to the x-axis such that

#o = i(x,y)'- 1*1 < 2, v = 0} ç dB.

P is a given point in B.

Lemma 1. Suppose ß = ß(x, y), ßh = ßh(x,y) (h = 1, 2, . .. ) are C°° functions

in R2 satisfying the following conditions:

(a)|< ß<\,\< ß"<\ VA;

(b) \Dyß»(x,y)\ < c„ \D2ßh(x,y)\ < c2 V(x,y) G B, VA;

(c) ßh converges weakly in L2(B) to ß, as h -» oo;

(d)ß\x,y) = ßh(x,-y).

Denote by E and Eh respectively the operators Dxx + ßD^, and Dxx + ßhDe-

claim. If G(x,y) = G(P; x,y) and Gh(x,y) = Gh(P; x,y) are the Green's func-

tions for E and Eh in B with pole P, then

DyGh(x, 0) -♦ DyG(x, 0)    uniformly for x E [-1, 1 ].

Proof. Denote by T+ the set {(x, v): |x| < 1 + e; 0 <y < u} with e, p. small

enough to ensure T+ E B, ?ï T+. T_ will be the set {(x, y): |x| < 1 + e,

-it < v < 0} and T = T+ u T_. In T+ we have

(2.1) EtGh = D2xGh + D2{ ßhG") = 0.

Furthermore G*(x, 0) = 0 if |x| < 2.

The equation (2.1) can be written in the following divergence form:

(2.2) D2xGh + Dy(ßhDyGh) = ~Dy(DyßhGh).

Extend now Gh(P; x,y) to an odd function with respect to v across y = 0 and

call Gh(P; x,y) the extended function; then Gh(P; x,y) satisfies in Tibe equation

(2.2). On the other hand, by (1.1), it is easy to show that Gh(P;x,y) is

equibounded in L2(T) and, by the hypothesis (b) we have \\Dyßh\\L^T) < c,.

Well-known results on divergence form equations imply that \\Gh(P; -)\\ ̂ ¿(j-) < c

(independent of h) and thus, by Sobolev's immersion theorem, Gh(P; ■) is

equibounded in Lp( T) for every p > 2.

Therefore, Meyers' theorem (see [3]) implies the existence of 8 > 0 such that

Il G (P; Ollw'^^^r) < œnst   (independent of A).
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In particular we have

(2.3) \\Gk(P; •)||w,u+«(r+) < const   (independent of A).

Differentiating now (2.1) with respect toy and putting vh = DyGh, we see that vh

satisfies in T+ the following divergence form equation:

D2xv" + Dy(ß"Dyv") = -2Dy(Dyßhvh) - Dy(D2ßhGh).

By (2.3) and hypothesis (b), the right-hand side is the divergence of an

equibounded (in L2+S(T+)) vector field. Using once more Meyers' result we

deduce that

(2.4) Hü*!! ff'^+«(r+) < const    (independent of A).

From (2.1) and (2.4) it follows that ||G*(P; -)ll»F"+4(r+)< const (independent of

A). Sobolev's immersion theorem imphes now that Gh (actually a subsequence)

converges in CX(T+) to some continuous function g(x,y). The conclusion of

Lemma 1 will follow from the following lemma.

Lemma 2. Under the hypothesis of Lemma 1, Gh(P; x, y) converges weakly in

L2(B)toG(P;x,y).

Proof. Consider the function

(2.5) u"(P) = [ G"(P; x,y)/(x,y) dx dy
JB

where/ G L2(B).

The function uh(P) is the solution, vanishing on oB, of Ehu = f in B. From the

result of Talenti [7], we have ||u*|| wu(B) < c||/||L2(B) with c depending only on the

geometry of B. Therefore uh admits a subsequence converging weakly in W2\B)

and strongly in WX*{E) for everyp > 2 to a function u E WX2(B), which vanishes

on dB. We will show that u is the solution, vanishing on 95, of Eu = /

We have D2uh + ßhD2uh = /, and therefore
xx yy

D2xuh + Dy{ßHDyu") = DyßkDyu" + f.

It is enough to show that (Dyßk)(Dyuh) converges weakly in L2(B) to (Dyß)(Dyu)

and this is an easy consequence of the following facts: ßh —» ß in L2(B) weakly,

II ßAIL»(a) < const, Dyuh -> Dyu in L2(B) strongly.

On the other hand Gh(P; ■) is equibounded in L2(B) and so has a subsequence

which converges weakly in L2(B) to some function vP E L2(B). From the represen-

tation formula (2.5), letting hn tend to infinity, we have

(2.6) u(P) = f vP(x, y)f(x, y)dxdy.
Jb

Since (2.6) holds for any/ G L2(B), we conclude vP = G.

Lemma 3. Suppose ß and ßh are C°° functions in R2 satisfying the following

hypotheses:

(a)\< ß<l,{-<ßh <\ VA;

(b) |7>,/?*(x,y)| < C„ \D2xß\x,y)\ < C2 V(x,y) G B, VA;    .
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(c) ßh converges to ß in L^B);

(d)ßh(x,y) = ß\x,-y).

Denote by E and Eh the operators Dxx + ß ■ Dyy and Dxx + ßh ■ Dyy and by G(x,y)

= G(P; x,y), Gh(x,y) = Gh(P; x,y) their Green's functions in B with pole P.

Claim. Dy(ßhGh)(x, 0) -+ Dy(ßG\x, 0) uniformly for x E [-1, I].

Proof. Let 7"+ be as in the proof of Lemma 1. In T+ we have

D2xGh + D2(ßhG") = 0.

This means that the function vh = ßhGH satisfies the equation Dxx(vk/ßh) +

Dy2vvh = 0. Furthermore vh(x,y) = 0 if |x| < 1 + e and y = 0. Arguing now as in

Lemma 1, having interchanged the roles of x and y, we deduce that uA—»u in

CX(T+) where v is some C1 function in T+.

The lemma will be proved if we show that Dyv(x, 0) = Dy(ßG)(x, 0) for |x| < 1.

But, if we recall that the L-elliptic measure o>[ has density Dy( ßG)(x, 0), this

follows from the following general lemma.

Lemma 4. Let fi be a bounded domain of R" and Lh = S^., OyD,2 (A =

1,2,...) with a¡j E C(fi). Suppose furthermore that

(a) for every £ G R", ft|£|2 < S",., a¡¡^ < M\£\2 with /t and M independent ofh;

(tya^ayinLljß).
Then, if L is the limit operator S^., atJD^ and P is fixed in fi, w/» converges

weakly to oi[, that is, for every g E C(9fi) we have

fg(o) dw[„ -h> fg(o) du[.

Proof. It is enough to show that, for every <p G Cc0(9fi), the solutions of the

problems Lhuh = 0 in fi, uh = <p on 9fi (A = 1, 2, . . . ) converge in P to the

solution u of the problem Lu = 0 in fi, u = <p on 9fi.

Since <p is a smooth function, uh is an equibounded sequence in «^(fi) for every

p < oo and therefore converges weakly in W/^fi) and strongly in L°°(fi) to some

function u E W2iP(Çl). Obviously u is the solution of the problem Lu = 0 in ß,

« = ff on 9ß, and the proof is complete.

3. Construction of a singular elliptic measure. Suppose {A„} and {kn} are two

increasing sequences of positive integers with hn —> oo and kn —» oo. Let <p„(x) = 1

+ (1/2«1/2) cos(A„x) and denote by ^ a CQX(R) function such that \p(t) = t|/(-r),

0 < «// < 1, ^ = 1 if \t\ < 1, i/> = 0 if |r| > 2. Consider now the function a(x,y)

<px(x)   if|y|>l/*„

Mkn+ly)<pn+l(x) +[i - Hkn+ly)]9„(x)   if 1A„+1 < |y| < l/k„,

n = 1, 2, ...,

1    if y = 0.

W K+i ** 2rc„, the function a is continuous in R2 and C°° except on the x-axis;

moreover j < a < |.

defined by

a(x,y) =
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Let B be as in §2 and L = Dxx + aD^.

Theorem. If {hn} and {kn} are suitably chosen, the L-elliptic measure u[ on dB

(evaluated at the point P E B) is not absolutely continuous with respect to the

Lebesgue measure on [-1, 1].

Remark. Since the L-elliptic measures evaluated at different points of B are

mutually absolutely continuous (by maximum principle), the choice of the point P

is irrelevant.

Proof of the theorem. We prove the theorem via an approximation argument.

Observe that a is the uniform (in R2) limit of the sequence of the C°° functions

defined by

a(x,y)     if |y| > l/rc„,
<*n(x,y) = ,

<*>„(•*)     if \y\ < 1 IK-

As usual we denote by L" the operator £)¿ + o^D^ and by u[« its elliptic

measure on dB evaluated at P.

Note that on B0 (i.e. B n {y = 0}) the density of w/"- is given by

<p„(x)DyG"(P; x, 0), where G"(P; x,y) denotes the Green's function of L".

Applying Lemma 4, we see that (¿[» converges weakly to u[; therefore the

theorem will be proved if we choose {A„} and {kn} such that tpn(x)DyG"(P; x, 0)

converges weakly to a singular measure on [-1, 1].

We proceed by induction.

Set A, = kx = 1 and suppose we have already chosen A2, . . ., A„; k2, . . . , k„ in

such a way that A, > 4A,_,, kj > 2k}_x for y = 1,2,... , n. To choose kn+x, put

c = min^e[_,,] DyGx(x, 0), which is a positive number by Hopfs lemma (see [5, p.

65]) and define

(a„(x,y)    if|y|> l/kn,

ak{X'y)      [^(ky)+[l-^(ky)]<pn(x)   if|y|<lA,.

If k > 2kn, it is easy to check that äk E Cca(R2) and moreover äk converges to an

in Lf^R2) as /c ̂  oo and Dxcik, Dxxäk are equibounded in R2. Let us denote by

Gk(P; x,y) the Green's function in B for the operator Dxx + %AÍ, with pole P.

Lemma 3 guarantees now the existence of an index kn+x such that kn+x > 2k„ and

,««, H^G^'Y^O) - Z>,KG")(x,0)| < ̂ j.

That is, since ctk¡¡+¡ = 1 near {y = 0} and Gk"*' = G" = 0 on (y = 0},

(3.1) max    \DyGk-^(P;x,0)-(pn(x)DyG"(P;x,0)\<-¿-.
jce[-i,i] '      4

TU L A   fTo choose hn+, we define

ñn(x,y) =

<*n(x,y)   if |y| > l//c„,

UK^y) 1 -I-—- cos(Ax)
2(n + 1)1/2

+ [i - Hkn+iy)]<pn(x)

ifbl < l/kn.
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Clearly äh G C°°(Ä2) and áh -» a¿_ weakly in L2(B) as h-> oo; furthermore,

Z>,,<ïA and Dyyàh are equibounded in B. Therefore, Lemma 1 implies the existence of

an index hH+, such that hn+, > 4A„ and

(3.2) max    \DyG*-+>(P; x, 0) - DyG^(P; x, 0)1 < -^-,
ie[-i,i] i   ' ' i      4«+2

where G*(P; x, 0) is the Green's function in B for the operator Dxx + aAZ)¿ with

pole P.

By this choice of An+, we have ¿^    = an+x; (3.1) and (3.2) give

(3.3) ^max    |%fif+,(i»! *, 0) - £LG"(J»; x, 0)<p„(x)| < ^».

From (3.3) we deduce that

^+,2>J>G»+I(P;*,0)

(3'4) = ( ñ <P») ̂ C»(P; x, 0) + 2 R,(*)l Jtt %(*))

where maxxe,_, ,j |Ä,(x)| < c/4/+1.

Since IFA_, ff/, > 2~y it follows that the function between square brackets in (3.4)

converges uniformly in [-1, 1] to some continuous function w(x); moreover w(x)

> | c > 0. On the other hand, II"_, <¡d, converges (see [8, vol. I, p. 209]) weakly in

the sense of the measures on [-1, 1] to a singular measure.

We conclude that u[ also converges weakly to a singular measure on [-1, 1] and

so the proof is complete.
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