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A NONVARIATIONAL SECOND ORDER ELLIPTIC OPERATOR
WITH SINGULAR ELLIPTIC MEASURE

LUCIANO MODICA, STEFANO MORTOLA AND SANDRO SALSA

ABSTRACT. We exhibit an example which proves that the elliptic measure for a
second-order operator of the form 27, a,,D‘} with continuous coefficients can be
singular with respect to the surface measure on the boundary of a smooth
two-dimensional domain.

1. Introduction. In the papers [2] and [4], examples of singular elliptic measures
for second-order operators in divergence form are given. In this note, following the
ideas contained in [4], we exhibit an analogous example in the nonvariational case.

We recall the definition of elliptic measure. Let  be a bounded subset of R"
with smooth boundary 32 and L = 27, a,.jD,.f, a uniformly elliptic operator with
continuous coefficients in . It is well known that, for every g € C(0f2), there exists
a unique solution u € W2X(8) N C() of the problem

Lu=0 inQ, u=g onoa.
The classical maximum principle and the Riesz representation theorem imply

that for each P € Q there exists a Borel measure on 9%, w;” (the L-elliptic measure
evaluated at P), such that the following formula holds:

u(P) = fa _8(0) dwf(0).

On the other hand, by a result of Pucci and Alexandrov (see [1] and [6]), the
solution, vanishing on the boundary, of the equation Lv = f, f € L"(), satisfies
the following estimate

(1.1) max |o(P)| < c|fll @)
Pef

where the constant ¢ depends only on the ellipticity constants and the geometry of
Q.

Notice that, by a result of Talenti [7], in dimension two we have the stronger
inequality
(1.2) ol w2y < cllfll L2y
where ¢ depends on the same parameters as before.

Pucci-Alexandrov’s theorem implies the existence of the Green’s function
G(P; Q), such that G(P; -) € L""~Q) for every fixed P and o(P) =
Ja G(P; Q)A(Q) dQ.
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In the case of smooth coefficients, the divergence theorem gives the connection
between the Green’s function and the L-elliptic measure; we have

dwf (o) = 2 ,/(0)v,D, G(P; o) do

l‘[-
where » = (v,, », . . ., »,) is the inward unit normal to 9%, and do is the usual
(n — 1)-dimensional surface measure on 0S2.
Furthermore we recall that in @\ { P}, G(P, -) satisfies the equation L*G(P; +)
= 0, where L* is the adjoint operator of L; formally L*u = 27 ,_, ( u).

2. Main lemmas. In this section, B is a bounded C* domain in the upper
half-plane R2 adjacent to the x-axis such that

By = {(x,): |x| <2,y =0} CdB.
P is a given point in B.

LemMMA 1. Suppose B = B(x,y), B" = B%(x,y) (h=1,2,...) are C*® functions
in R? satisﬁzing the following conditions:

(@3<B<3,3<p"<iVh

(b) IDyB"(x,y)I < ¢y, | Dy B*(x, »)| < ¢, ¥(x,y) € B, Vh;

(c) B* converges weakly in LX(B) to 8, as h — o;

(d) B*(x,y) = B*(x, -»).
Denote by E and E, respectively the operators D?, + BD;, and D}, + B "D,i,.

Claim. If G(x,y) = G(P; x, y) and G*(x,y) = G*(P; x, y) are the Green’s func-
tions for E and E, in B with pole P, then

D,G"(x, 0) > D,G(x, 0) uniformly for x € [-1, 1]

PrOOF. Denote by T, the set {(x, y): x| <1+ ¢ 0<y <pu} with & p small
enough to ensure T, C B, P& T,. T_ will be the set {(x,y): |x| <1+,
<y <0}andT=T, UT_.InT, we have
(2.1) EfG*" = D1LG" + D}(B*G") =0.

Furthermore G*(x, 0) = 0 if |x| < 2.

The equation (2.1) can be written in the following divergence form:
(22) DXG" + D(B"D,G*) = -D,(D,B"G").

Extend now G*(P; x, y) to an odd function with respect to y across y = 0 and
call G*(P; x, y) the extended function; then G*(P; x, y) satisfies in Tlthe equation
(2.2). On the other hand, by (1.1), it is easy to show that G"(P x,y) is
equibounded in L%*T) and, by the hypothesis (b) we have ||D B" | Loy < €1
Well-known results on divergence form equations imply that |G (P; MNwrary <c¢
(independent of #) and thus, by Sobolev’s immersion theorem, GP; ) is

equibounded in L?(T) for every p > 2.
Therefore, Meyers’ theorem (see [3]) implies the existence of § > 0.such that

IG*(P; )| wiz+sry < const (independent of k).
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In particular we have
(2.3) |G"(P; )|l yra+s(r,y < const (independent of h).

Differentiating now (2.1) with respect to y and putting v* = D,G", we see that v*
satisfies in T, the following divergence form equation:

DXo" + D(B"D,o") = -2D,(D,B"") — D,(D2B*G"*).
By (2.3) and hypothesis (b), the right-hand side is the divergence of an

equibounded (in L2*%(T,)) vector field. Using once more Meyers’ result we
deduce that

(24) |o*|| yravs(r,y < const (independent of k).

From (2.1) and (2.4) it follows that ||G"(P; -)|| yaz+s(r,) < const (independent of
h). Sobolev’s immersion theorem implies now that G”* (actually a subsequence)
converges in C'(T,) to some continuous function g(x,y). The conclusion of
Lemma 1 will follow from the following lemma.

LEMMA 2. Under the hypothesis of Lemma 1, G"(P; x, y) converges weakly in
L*(B) to G(P; x, y).

ProoF. Consider the function

(2.5) uh(P) = fB GH(P; x, y)f(x, y) dx d

where f € L*(B).

The function u”(P) is the solution, vanishing on 9B, of E,u = f in B. From the
result of Talenti [7], we have ||u”|| 235 < c|lf]| 125 With ¢ depending only on the
geometry of B. Therefore u* admits a subsequence converging weakly in W**(B)
and strongly in W'?(B) for every p > 2 to a function u € W?*(B), which vanishes
on dB. We will show that u is the solution, vanishing on 0B, of Eu = f.

We have D2u* + B"D}u" = f, and therefore

D2u" + D(B"D,u*) = D,B*Du" + f.
It is enough to show that (D, 8*)(D,u") converges weakly in L¥(B) to (D,B)D,u)
and this is an easy consequence of the following facts: 8* — B in L*(B) weakly,
| B*| =5 < const, D,u* — D,u in L*(B) strongly.

On the other hand G*(P; ) is equibounded in L*(B) and so has a subsequence

which converges weakly in L%(B) to some function v, € L*(B). From the represen-
tation formula (2.5), letting A, tend to infinity, we have

(2.6) u(P) = [ 0p(x, 1) f(x, ) dx .
Since (2.6) holds for any f € L*(B), we conclude vp, = G.

LEMMA 3. Suppose B and B* are C* functions in R? satisfying the following
hypotheses:

@3i<B<3 i< B <3Vh

(b) IDth(x’y)l < Cl’ |Dx2th(x’y)l < CZ V(x’y) € B’ Vh;
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(c) B* converges to B in L} (B);
() B*(x,y) = Bh(x’ -»)
Denote by E and E, the operators D2 + B- D2 and D2, + B*. D2 and by G(x,y)
= G(P; x,y), G*(x,y) = G*(P; x, y) their Green s functions in B wzth pole P.
Claim. D,(B*"G*)(x, 0) — D,( BG)X(x, 0) uniformly for x € [-1, 1].

PRrROOF. Let T, be as in the proof of Lemma 1. In T, we have
D2.G" + D2(B"G*) = 0.

This means that the function v” = B*G" satisfies the equation D} (v”/B") +
D2 v* = 0. Furthermore v”(x,y) = 0if |x| < 1 + ¢ and y = 0. Arguing now as in
Lemma 1, having mterchanged the roles of x and y, we deduce that v* > v in

CY(T,) where v is some C' function in T,.

The lemma will be proved if we show that D,v(x, 0) = D,( 8G)(x, 0) for |x| < 1.
But, if we recall that the L-elliptic measure w; has density D,(BGXx, 0), this
follows from the following general lemma.

LBMMA 4. Let Q be a bounded domain of R" and L" =327, ,a'D;} (h=
. ) witha; € C(R). Suppose furthermore that
(a)for every £ € R", pl¢f? < =14, .'.'£,.§j < M|¢? with p. and M independent of h;
(®) a} - a; in L2(@).
Then lf L is the limit operator 27;_, yz and P is fixed in Q, w/» converges
weakly to wf, that is, for every g € C(BQ) we have

g(0) dwfi — | g(o) dwf.
Q 2

PROOF. It is enough to show that, for every ¢ € C*(92), the solutions of the
problems L"" =0 in Q, u* =¢ on 32 (h=1,2,...) converge in P to the
solution u of the problem Lu = 0in £, u = ¢ on 9.

Since @ is a smooth function, u, is an equibounded sequence in W>*(R) for every
p < oo and therefore converges weakly in W2(Q) and strongly in L*(2) to some
function u € W*(£2). Obviously u is the solution of the problem Lu =0 in Q,
u = @ on 9%, and the proof is complete.

3. Construction of a singular elliptic measure. Suppose {4,} and {k,} are two
increasing sequences of positive integers with 4, — oo and k, — co. Let @,(x) = 1
+ (1/2n'/?) cos(h,x) and denote by ¢ a C{°(R) function such that y(z) = (1),
0Ky <L y=1if [t <1, ¢ =0if |f|] > 2. Consider now the function a(x, y)
defined by

oi(x) if|y| > 1/k,

‘P(kn+l)’)¢n+l(x) +[1 - ‘P(kn+1.Y)]‘Pn(x) if 1/kn+l < I.Y| < l/k,,,

x,y) =
(. y) =1,2...,

1 ify=0.
If k,,, > 2k,, the function « is continuous in R? and C* except on the x-axis;
moreover 3 < a <3.
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LetBbeasin§2andL=Dx2x+aD)§.

THEOREM. If {h,} and {k,} are suitably chosen, the L-elliptic measure w} on 9B
(evaluated at the point P € B) is not absolutely continuous with respect to the
Lebesgue measure on [-1, 1].

REMARK. Since the L-elliptic measures evaluated at different points of B are
mutually absolutely continuous (by maximum principle), the choice of the point P
is irrelevant.

PROOF OF THE THEOREM. We prove the theorem via an approximation argument.
Observe that a is the uniform (in R?) limit of the sequence of the C* functions
defined by

a(x,y) = [a(x,y) if |y| > 1/k,,
e e(x) if|y| <1/k,

As usual we denote by L" the operator D% + «,D2 and by w/. its elliptic
measure on dB evaluated at P.

Note that on B, (ie. BN {y =0}) the density of /. is given by
@.(x)D, G"(P; x, 0), where G"(P; x, y) denotes the Green’s function of L".

Applying Lemma 4, we see that w/. converges weakly to w/; therefore the
theorem will be proved if we choose {h,} and {k,} such that ¢,(x)D,G"(P; x, 0)
converges weakly to a singular measure on [-1, 1].

We proceed by induction.

Set A, = k; = 1 and suppose we have already chosen h,, . .., h,; k;, ..., k, in
such a way that , > 4h;,_,, k; > 2k;_, forj=1,2,..., n. To choose k,,,, put
¢ = min, ¢, ; D,G(x, 0), which is a positive number by Hopf’s lemma (see [S, p.
65]) and define

_ a,(x,y) if |y| > 1/k,
a(x,y) =

(k) +[1 = W(ky) ] (x) if|y| <1/k,

If k > 2k, it is easy to check that & € C ®°(R?2) and moreover a, converges to a,
in L (R? as k > o0 and D&, D2.&, are equibounded in R Let us denote by
G*(P; x, y) the Green’s function in B for the operator D2, + & D2, with pole P.
Lemma 3 guarantees now the existence of an index k, , , such that k,, , > 2k, and

- = c

 max |D(&,,,G%)(x, 0) — D,(e,G")(x, 0)| < sl

That is, since @, = 1 near { y = 0} and G*+1 = G"=0o0n{y =0},
n . ¢

3.1) xél}e_lfl] |Dka.+|(P, x, 0) — @,(x)D,G"(P; x, 0)| < porch

To choose h,_, , we define
a(x,y) if|y| > 1/k,
1
(%, 7) = { W(ky 1 Y)| 1 + ———— cos(hx) | +[1 = Y(Kyp112) ] @a(x)

2(n +1)
if|y| < 1/k,.
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Clearly &, € C*(R?) and &, — &, weakly in L*(B) as h— oo; furthermore,

D, &, and D d, are equibounded in B. Therefore, Lemma 1 implies the existence of
an index A, ., such that 4, , > 4h, and

Ghs1( P — D.Gky(P; -
(32 max, |D,G"+(P; x, 0) — D,G*+\(P; x,0)| < p=t

where G*(P; x, 0) is the Green’s function in B for the operator D2, + &,,D,fv with
pole P.
By this choice of &, , we have &, = = a,,; (3.1) and (3.2) give

(3.3) max |D,G"*'(P; x, 0) — D,G"(P; x, 0)g,(x)| <
x€[-1,

From (3.3) we deduce that
(pn-o-lDyG’H-l(P; X, 0)

c
4n+l :

9 ~ (1l ¢)|D,6'P: %0 + 3 R 1T aut))
J=1 J=1 h=1

where max, ¢, ;) |[Ri(x)| < c/#™".

Since IF,., @, > 27 it follows that the function between square brackets in (3.4)
converges uniformly in [-1, 1] to some continuous function w(x); moreover w(x)
>2¢ > 0. On the other hand, IT;., @; converges (see [8, vol. I, p. 209]) weakly in
the sense of the measures on [—1, 1] to a singular measure.

We conclude that w;” also converges weakly to a singular measure on [-1, 1] and
so the proof is complete.

REFERENCES

1. A. D. Alexandrov, Majorization of solutions of second-order linear equations, Amer. Math. Soc.
Transl. (2) 68 (1968), 120-143.

2. L. Caffarelli, E. Fabes and C. Kenig, Completely singular elliptic harmonic measures, Indiana Univ.
Math. J. (to appear).

3. N. G. Meyers, An LP-estimate for the gradient of solutions of second order elliptic divergence
equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. III 17 (1963), 189-206.

4. L. Modica and S. Mortola, Construction of a singular elliptic-harmonic measure, Manuscripta Math.
33 (1980), 81-98.

5. M. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall,
Englewood Cliffs, N.J., 1967.

6. C. Pucci, Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl. (4) 74 (1966), 15-30.

7. G. Talenti, Equazioni lineari ellittiche in due variabili, Le Matematiche 21 (1966), 339-376.

8. A. Zygmund, Trigonometric series, Cambridge Univ. Press, London and New York, 1959.

ISTITUTO DI MATEMATICA “LEONIDA TONELLI”, UNIVERSITA DI PisA, 1-56100 Pisa, ITALY (Current
address of Luciano Modica and Stefano Mortola)

ISTITUTO DI MATEMATICA “FEDERICO ENRIQUES”, UNIVERSITA DI MILANO, 1-20133 MILANO, ITALY
(Current address of Sandro Salsa)



