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SHAPE OPERATORS OF EINSTEIN HYPERSURFACES

IN INDEFINITE SPACE FORMS

MARTIN A. MAGID

Abstract. The possible shape operators for an Einstein hypersurface in an indefi-

nite space form are classified algebraically. If the shape operator A is not diagonal-

izable then either ^2-0or^2 = -¿>2Id.

Introduction. In [F] A. Fialkow classifies Einstein hypersurfaces in indefinite

space forms, if the shape operator is diagonalizable at each point. He calls such an

immersion proper (p. 764). This paper investigates what happens if the immersion

is improper, i.e., if the shape operator is not diagonalizable at a point. It is possible

for such a shape operator to have complex eigenvalues or eigenvectors with zero

length. The main tool is Petrov's classification of symmetric operators in an

indefinite inner product space [P].

Theorem. Let n>2. If f: M" —» Mn + X(c) is an isometric immersion of an

n-dimensional indefinite Riemannian manifold into an n + 1 dimensional space form

of constant curvature c and if M" is Einstein, then the shape operator Ax at each point

x E M is either diagonalizable or can be put into one of the following two forms.

Ar =

0

0
0      ±1
0       0

0     ±1
0      0

or

A   =*

0      ß
-ß     0

0      ß
-ß     0

with respect to some specially chosen basis. In the last case n is even and TX(M") has

signature (n/2, n/2).
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Note. The basis in the first case is of the form {ex, . . . , ep, /„ /,,..., lq/2, lq/2)

where g(e¡, ef) = ±8ip g(et, Iß = 0 = g(e,. If) = g(li, lj) = g(l], If) and g(lp fy = 1.
In the second case the basis is {e„/„ e2,f2, . . ., en/2,f„/2] with g(e¡, ef) = -8ip

g(fi,fj) = 8U and g(ei,fj) = 0. This follows from [PL

Preliminaries. The Ricci tensor field 5 of a manifold M with linear connection is

defined by

S(A-, r) = tr{ V -* R( V, X) Y}    where X, Y, V are in TX(M).

If ex, . . ., e„ is an orthonormal basis of TX(M), so that g(e¡, ef) = ofiy, a, = ± 1,

then S(X, Y) = 2?_, a,g(/?(e,., X) Y, e,).

The Gauss equation for a hypersurface in a space form M(c) states that

R(UX, U2)U3 = c(UxA U2)U3 + <£, 0(AUxAAU2)U3

where R is the curvature tensor of the hypersurface, £ is a local, unit normal and A

the shape operator of the isometric immersion.

Thus we see that

S(X, Y) = 2 «,*(*(*, A X) Y + <£, £>L4e,. A AX) Y, et)
/-i

i-i

+ 2 a Da,.[ g(AX, Y)g(Aet, e,) - g(AX, e)g(AY, e,)]
/-i

= cng(X, Y) - c 2 «wfa, *)«(* *)

+ <£, £> üvl g(AX, 7) - 2 <fc €>,f?W OsW *,)•
i-i

Note that 2?_, o^, *)g(e„ y) = g(X, Y) so that

S(X, 7) = c(n - l)g(X, Y) + <£, £>(uvl g(AX, Y) - g(A2X, Y)).

Proof of Theorem. If M" is Einstein then S(X, Y) = pg(X, Y). Letting <£, £>

= t we see then that [p - c(n - 1)]7 = r[(tr A)A -A2] or r[p - c(n - 1)]7 =

(\tA)A - A2.

According to Petrov [P] a symmetric operator in an indefinite inner product

space can be put into the following form:

A =

BL
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where

B, =

d,\      d,

0       d,\    4

Cj-

«,      ß,       1 0

-ßj     «,      0 1

«,. yS,    1     0

-ßj «,    0     1

One computes that

B,2 _

\2    2À,      1

0     \2     2A,.

4
4 = ±1, Ä, is j,. X s„

«, ßj

-ßj    «,

ßj =£ 0 and C, is 2/,. x 2(,.

^ =

a2-ßf       lOjßj 2a, 2ßj

-2ajßj      aj-ß2        -Ißj 2a,.

1

0

0

0

0

1

2\

\2

0

1      0

af-ß2    2ajßj    2a,    2%     1      0

Letting k = r(p — c(n — 1)) we must have ni = (tr A)A — A2.

It is clear from the form of B2 and C2 that s¡ < 2 and tj < 1 so that A has blocks

of the form

[A] or
4\ 4

4\
or

ßk

ßk
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with squares

[A2]
or

0     X2
or

tf 2«*Ä*Hk

-2akßk     a2 - ß2

By a change of basis {/, /"} —» {-/, /} we can assume we have blocks of the form

[ ft]    or
Xj     1

0     Xj
or

-ßk

With trace A = s the equation jyi — A2 = kI yields

j - 2A,. = 0,       sßk - 2akßk = 0,

sft - u/ = K, sa,. - X2 = k,       sa* - a2 + ß2 = k.

If there are any blocks with a's and ß's, ß ¥= 0 so that we have s/2 = Xj, s/2 = ak,

for each j and ä:. Thus all Xfs and aks are equal. It is then clear that all ßks axe

equal. The equations become

(l)s -2X = 0,s -2a =0,

(2) sjUj — ft2 = k, sX — X2 = K, sa — a2 + ß2 = k.

Substituting (1) in (2) we have sfi¡ — ft,2 = k, X2 = k, a2 + ß2 = k. Since X = a and

ß ¥= 0, there can be blocks with a's or blocks with X's but not both. In either case

we have

ft =\(s±\/s2-4K2).

If k = X2, ft = s/2. If k = a2 + ß2, s2 - Ak2 < 0 and there are no ft's.

If there is a block with a X, then X = j/2 and ft = s/2, for each /'. If p is the

number of /t's which appear in A and 2<7 the number of X's

s=pn+2qX= p(s/2) + 2q(s/2).

Thus s(l - p/2 - q) = 0. But/? + 2q > 3, so s = 0. One possibility for /I then is

0     ±1
0       0

0     ±1
0       0
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If there is a block with a ß, there are no other types of blocks. Since a = s/2 we

again see that s = 0 and
"  0      ß

-ß     0

A =

0      ß
-ß     0

Q.E.D.
These shape operators all occur in examples of Einstein hypersurfaces in indefi-

nite space forms.

Example l.R2"^R2n+1.

(X,, . . . , X2n_,, X2„) r-» (X,  + X2, Xj + X4, . . . , X2n_,  + X^,

x, — x2, . . ., x2n_x — x2n, x2 + x4 + •    • +x2n).

The ambient space has the standard inner product (-,...,-, + •••+) with n

negative signs. The shape operator is

0     1
0    0

0     1
0    0

at each point.

Example   2.   GS"(1) = {(Z„ . . . , Z„+1) E C+1:   Z2 + • • • +Z2+1 = 1}   in

S21~\ ' has shape operator
Tj

0      1
— 1    0

0      1
-1     0

at each point.

Applications. This allows us to obtain some information about isometric immer-

sions of Einstein hypersurfaces.

Proposition. If f: A/2"-» M2n+X(c) is an isometric immersion of an Einstein

manifold and if Ax is not diagonalizable at each point then A2 = 0 everywhere or

A2 = -b2I everywhere, for b a nonzero constant.

Proof. If Ax is not diagonalizable then the proof of the theorem shows tr Ax =

0. Thus

k7 - (tr AX)AX + A2 = 0 = kI + A2

for k a constant. The proof also shows <c > 0.
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Proposition. If f: M2" -^ M2n+X(c) is an isometric immersion of an Einstein

manifold with A2 = 0, rank Ax = n for ail x E M2", then ker A is a smooth,

integrable, totally geodesic, and totally degenerate n-dimensional distribution on M.

Proof. See also [G]. Choose Ux, . . . , Un atp such that A U}-i* 0 and t/„ . . ., U„

are linearly independent. Then in a neighborhood of p, AUj ¥= 0. Since AAUj = 0,

A t/„ . . . , A U„ form a basis for ker A in a neighborhood of p and ker A is a

smooth, «-dimensional distribution.

If X, Y E ker A we have, by Codazzi's equation that A(V x Y) - VX(A Y) =

A(VyX)~   Vy(AX)  so

A(VXY)- A(VYX) = 0,       A[X, y]=0

and ker A is integrable.

It is easy to see that A2 = 0, rank A = n implies that ker A = im A. If U, V E

TXM, (AU,AV) = (A2U, Vs) = 0 so that ker A is totally degenerate, i.e., has no

metric.

Finally, if X, Y E ker A, then Vx Y E ker A. < Y, A U) = 0 so

x<Y,Auy = <yxY,Auy + <y, vx(AU)y

= <yxY,Auy + <y, vt/(^^)> + <y,^[i7,^]> =<yxY,AU),

since AX = ^y = 0. Thus^iV^y)^ t/for all U a.nd A(VXY) = 0.

Note. In a subsequent paper [ML I classified Einstein hypersurfaces with A2 =

-Z>2 Id. They are certain complex spheres, of which Example 2 is one.
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