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TOTALLY REAL MINIMAL IMMERSIONS

OF «-DIMENSIONAL REAL SPACE FORMS

INTO «-DIMENSIONAL COMPLEX SPACE FORMS

NORIOEJIRI

Abstract, n-dimensional totally real minimal submanifolds of constant sectional

curvature in n-dimensional complex space forms are totally geodesic or flat.

1. Introduction. B. Y. Chen and K. Ogiue [1] showed that an «-dimensional,

totally real, minimal submanifold of constant curvature c in an «-dimensional

complex space form is totally geodesic or c < 0. On the other hand, [2, Theorem 7]

implies that a complete totally real minimal surface of constant sectional curvature

in a 2-dimensional complex space form is totally geodesic or flat. We shall prove a

generalization of these results.

Theorem. Let M be an n-dimensional, totally real, minimal submanifold of

constant sectional curvature c, immersed in an n-dimensional complex space form.

Then M is totally geodesic or fiat (c = 0).

2. Preliminary. We denote by M "(4c) an «-dimensional complex space form of

constant holomorphic sectional curvature 4c with complex structure J and metric

g. Let M be an «-dimensional Riemannian manifold of constant sectional curva-

ture c isometrically immersed in M"(4c) as a totally real submanifold. We denote

by o the second fundamental form of the immersion

o(X,Y)=VxY-VxY,

where V (resp. V) is the covariant differentiation with respect to g (resp. the metric

g of M).

We put T = -Jo. Then T is a symmetric tensor field of type (1, 2) on M and it

satisfies

(2.1) g(T(X, Y), Z) = g(T(X, Z), y).

Moreover, the equations of Gauss, Ricci and Codazzi are given respectively by [1],

(2 2)   i¿ ~C){8(X' Z)g{Y' W) ~ 8(X' W)8{7' Z)} + 8iT(X' Z)' r(Y' W))

-g(T(X, W), T(Y,Z)) = 0   (the equations of Gauss and Ricci),

(2.3) (VXT)( Y, Z) - (VYT)(X, Z) = 0   (the equation of Codazzi).
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3. A lemma. In this section, we prove the following.

Lemma. Let T be a symmetric 3-linear map of R" X R" X R" into R such that

A { g(X, Z)g( Y, W) - g(X, W)g( Y,Z)}+  2   T(X, Z, fm)T( Y, W, fm)
(3.1) m~x

- 2   T(X, W,fm)T(Y, Z,fm) =0   and   A > 0,
m=\

(3-2) 2   T(X,fm,fm) = 0,
m = i

where g is the Euclidean metric of R" and/,, . . . ,fn is an orthonormal basis. If we

choose an orthonormal basis e„ . . ., e„, such that each e¡ is a maximum point of the

cubic function T(X, X, X), restricted to {X E R": \\X\\ = 1, and X is orthogonal to

ex, . . ., £,_,)}, then T has the following expression:

T{ea, ea, ea) = (« - fl)y(fI_^ +
A

1) (« - a + 1) . . . « '

T^ \>*ù        \(„-a+l) + '"+(n-a+l)...n *«■'

where 1 < a < n and a < ia,ja < n unless ia =ja = a.

Proof. If A = 0, the assumption (3.1) and (3.2) imply T = 0. Hence we may

consider the case A > 0. We shall prove this lemma by induction on the dimension

of R". It is easy to prove that T(ex, ex, X) = 0 for all X orthogonal to ex. Since

T(ex, X, Y) is symmetric with respect to X and Y, we can choose an orthonormal

basis/,(= ex),f2, ...,/„ which satisfies T(fx,f,ff) = A,^. Using (3.1) and (3.2), we

obtain

(3.3) A, > 0,

(3.4) Xx+ ■    ■Xn = 0,

(3.5) A + XxXa - (Xa)2 = 0   for K a < n.

If « = 2, the result follows from (3.3), (3.4) and (3.5).

Assume that the lemma is true for < « — 1 and consider the lemma for R". Let

/„...,/, be the orthogonal basis chosen above. From (3.5), we must consider two

cases.

Case I. X2= ■ ■ ■ = Xp+X (= ¡i) and Xp+2 = • • • = X„ (= v), where u # v and

1 < p < n — 2.

Case 2. X2 = • • • = A„ (= u).

If Case 1 holds, then, without loss of generality, we may assume 2p < « — 1.

From (3.4) and (3.5), it follows that

fi2 = (« - p)A/ (p + 1),        v2 = (p + \)Af (« - p),

Xxn = (n - 2p - l)A/(p + I)    and   Xxv =-(n - 2p - l)A/(n -p).



IMMERSIONS OF n-DIMENSIONAL REAL SPACE FORMS 245

Thus we have « — 2p — 1 > 0 and hence, « > 3,

n,=\/(n-p)A/(p + l) ,       y = -\/(p + l)A/(n-p) ,

Xx =V(n-p)A/(p + l)  -\/(p+l)A/(n-p) .

Therefore we use the following convention on the ranges of indices: a <a' < p

+ 1 < a" < «. Using (3.1), we have (Xa, - \,») T(fa, fa,, fa„) = 0, which, together

with Xa, - Xa„ ¥= 0, implies T(fa, fa,, fa„) = 0. Let N (resp. N'; N") be the linear

subspace of R" spanned by/2, ...,/„ (resp. f2, . . . ,fp+x; fp+2, . . . ,/„). Then we

obtain

T(X, r, Z") = 0,        T(fx, X', Y') = ^(n-p)A/(p + l) g(X', Y'),

T(fx, X", Y") = -\/(p+ l)A/(n-p) g(X", Y"),        T(fx, X', Y") = 0,

where X E N, X', Y' E N' and X", Y", Z" E N", which, together with (3.1) and

(3.2), imply that

A(n + p)/ (p + l){ g(X', Z')g(Y', W) - g(X>, W')g(Y\ Z')}

+  2  T(X',Z',fa)T(Y',W',fa)-  2  T(X',W',fa,)T(Y',Z',fa,) = 0,
a'-2 a'-2

%T(X',fa„fa,)=0

and

A(n + 1)/ (« -p){g(X", Z")g(Y", W") - g(X", W")g(Y", Z")}

+     2     T(X", Z",fa„)T(Y", W",fa„)
a"=p + 2

-     2     T(X", W", fa„)T( Y", Z", fa„) = 0,
a"=p + 2

2     T(X",fa„,fa,)=0,
a" =p + 2

where X', Y', Z', W E N' and X", Y", Z", W" E N". Since the dimensions of

.A/' and N" are less than «, from the assumption we obtain unit vectors e' E N' and

e" EN" suchthat

T(e', e', e') = (p - l)VA(n + l)/p(p + 1) ,

T(e", e", e") = (« - p - 2)V^(« + \)/(n-p- l)(n - p)

Therefore the definition of ex gives
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which implies \f(n - p)/ (p + 1) > (p - 1)V(« + 1 )/>(/> + 1) ■ We im-

mediately obtain/» = 1 or 2. This, together with the inequality, induces a contradic-

tion for « > 3. It is easy to treat Case 2 by the same argument as Case 1.

Q.E.D.

4. Proof of Theorem. Let T be the second fundamental form of the immersion as

a symmetric bihnear map TM X TM into TM. By (2.1), we may consider T as a

symmetric 3-linear map of TM X TM X TM into R. By (2.2) and the minimahty

of M, it satisfies (3.1) and (3.2) for A = c — c. We may assume that M is not

totally geodesic, i.e., A 9* 0. We easily obtain a local field of orthonormal frames

*?„ . . . , e„ such that the lemma holds. We denote by uj the Levi-Civita connection

with respect to e„ . . . , e„. Using (2.3), we have

#
" <4,(e,k - 2 <{ex)T(ei, ex) - 2 <{ex)T(ea, e,)

n    ,_,

-(» - 1)V4   2 *KO« + 22 ->i(<b)7fa. e,) = 0,   for all a * 1.
V "    /-i /-i

Taking the innerproduct of it and e„ we obtain wjie,) = 0. This, together with the

innerproduct of the above and eb (b ¥^ 1), imphes ux(eb) = 0. As a result, ex is a

parallel vector field on M. Thus M is flat.       Q.E.D.

The author is grateful to Professor K. Ogiue for his useful criticism.
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