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GLIDEBENDING OF GENERAL CAPS:

AN INFINITESIMAL TREATMENT

EDGAR KANN

Abstract. We prove that two C3 isometric surfaces S' and S" with (not neces-

sarily planar) boundary, immersed in E3, with K > 0, having their spherical

images in the same open hemisphere, and which are oriented so that the mean

curvatures have the same sign, are congruent if they satisfy the glidebending

boundary condition:

Let {n: e-n > 0, e = const, vector) be the open hemisphere. Then e-X' =

e ■ X" at corresponding boundary points, where A" and X" are position vectors of

S' and S".

The method uses the fact that the surface \(X" — .V) is an infinitesimal bending

field for the mean surface \(X" + X') and is elementary in that it uses the rotation

vector of classical infinitesimal bending theory but no integral formulas, maximum

principles for elliptic operators or index theorems. The surfaces considered need

not have a simple projection on a plane, be convex in the large (an example is

given) nor be simply connected. We use the method to prove the finite and

infinitesimal rigidity of general caps and caps under glidebending.

1. Introduction. The difference surface of two intrinsically isometric surfaces

gives a bending field for their mean surface. That is, if X' and X" are position

vectors of two isometric surfaces and X =\(X' + X"), Z =\(X" — X') then

dX ■ dZ = 0, which is the condition that Z be an infinitesimal bending field on the

mean surface X. This fact has been used by Cohn-Vossen [1] in his well-known

proof of the congruence of intrinsically isometric ovaloids.

If X were regular in the large then classical infinitesimal methods could be used

to prove finite rigidity theorems. However, regularity clearly does not hold in

general. Nevertheless, the mean surface for two isometric surfaces whose spherical

normal images lie in a hemisphere is regular on certain sets, namely those on which

the difference surface is singular. In [3] the author was able, by taking advantage of

this, to prove the congruence of two isometric, positively curved, but not neces-

sarily convex, surfaces satisfying this hemisphere condition whose boundary curves

are identical. The original bending field Z, which of course depends on the relative

positions of the surfaces, is replaced by one which differs from it by a trivial

bending, i.e., the velocity field of a rigid motion, in such a way that the singular

locus becomes a smooth curve or curves. Along such a curve the differential of the

new bending is normal to the surface and always points to the same side. This leads

to a contradiction if the singular locus is a simple closed curve.
_
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The method is elementary in the sense that it uses only the classical tools of

infinitesimal bending theory, in particular the rotation vector, and does not use

integral formulas, maximum principles for elliptic operators or index theorems.

The present paper applies the method to the much weaker boundary condition in

which the vector connecting boundary points which correspond under the isometry

is only required to be orthogonal to a fixed direction e (glidebending condition) such

that e■ n' > 0 and e-n" > 0, where n' and n" are unit surface normals to the

surfaces. Although congruence has been proved (see the standard reference [2,

§79]) in the case where the boundary curves lie in a plane, that is, for caps, the

result for nonplanar boundaries, that is, for general caps, is a natural generalization

whose proof is, to the author's knowledge, new (see §3 for definitions). Certainly,

the application of the author's methods to the solution of this problem is new.

The glidebending problem is considered in [2, §80] for general caps but not

proved there. The surfaces considered here are even more general than the general

caps in that they need not have a one-to-one projection on some plane, nor be

convex in the large (they are locally convex), nor be simply connected.

Theorem 1, which is a monotypy result in the class of C3 surfaces, is closely

related to a theorem of Pogorelov [5, Theorem 2, p. 178]. Pogorelov proves the

theorem for general convex surfaces which have a simple projection on some plane.

In §3 we give an example of a surface satisfying the hypotheses of Theorem 1

which has no simple projection on a plane and is locally convex but not convex in

the large. The infinitesimal rigidity under glidebending of the class of surfaces

considered in Theorem 1 is proved by the same methods in §4.

In order to convince the reader that the glidebending condition leads to a

significant class of problems we refer him to the example in [2, p. 169] of two

convex isometric surfaces with plane boundary which are not congruent under

rigid motions or reflections. These surfaces do not satisfy the condition H3 of

Theorem 1.

2. Main result.

Theorem 1. Let M be a compact two-dimensional, orientable Riemannian manifold

with boundary such that

HI. M is of differentiability class C  and

H2. M has Gauss curvature K > 0.

Let S' and S" be isometric immersions of M of class C3 in E3 such that 95" and

dS" are C" curves.

Let S' be oriented so that its second fundamental form is positive definite. We

assume that the orientation induced on S" by the isometry makes its second funda-

mental form also positive definite.

Suppose there exists a constant unit vector e such that:

H3. e ■ «' > 0 and e ■ n" > 0 on M + 8M, where «' and n" are the unit surface

normal vectors to S' and S" and
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H4. e-X' = e-X" on dM, where X' = X'(M) and X" = X"(M) are position

vectors of S' and S" representing the immersion.

Then S' and S" are congruent under rigid body motions.

An isometry satisfying the boundary condition H4 is called a glidebending [2, §80].

Proof. Choose an arbitrary point P on dM and let u, v be local parameters in a

neighborhood of P with v = 0 representing dM. Since by definition Z =

\(X" - X'), H4 is equivalent to e ■ Z = 0 on dM. Hence

(2.1) e-Zu=0   on3M.

Conditions H1-H4 are invariant under translations of S' and 5"' perpendicular

to e as well as rotations about an axis parallel to e. Therefore we may place the

surfaces by a rigid motion so that

(2.2) Z(P) = 0   and   ZU(P) = 0.

Calculation using X =j(X' + X") shows that, for any two isometric surfaces,

XUXXV + ZUXZV= \(X^ X x; + XJ X x;) and hence by H3

(2.3) e - Xu X X„ + e ■ Z„ X Z„ > 0   on M + dM.

Therefore the mean surface X is regular at any point where Zu X Z„ = 0 and, in

particular, at P. Hence there is a neighborhood N of P on which X is regular. As

mentioned above dX • dZ = 0 so Z is a bending field on X. A classical result of the

theory of infinitesimal bending [2, p. 54] states that there exists a rotation vector y

defined at any regular point of X such that

(2.4) v X dX = dZ.

We will next show that «' = «" at P. Since X¿ = *„" at P by (2.2), it will follow

that X¿ = X¡f. Since P is an arbitrary point of dM and since e • «', e • n", e • X¿ and

e ■ X£ are invariant under a translation of A" or X" perpendicular to e or a rotation

about an axis parallel to e, it will follow that

(2.5) e-n' = e-n"    and   e-X'v = e- *„"    on dM.

From there it is easy to show that the boundary strips of 5" and 5"' are congruent

and hence that S" and S" are congruent.

To show that n' = n" we suppose that ri ¥= n" at P and derive a contradiction.

By (2.4) and (2.2) there is a vector yP such that^ X Xu = Zu = 0 and yP X Xc =

Zv at P. Zv =£ 0 since ri ¥= n"; hence yP =£ 0. SinceyP is parallel to Xu, yp ■ np = 0,

where nP is the unit surface normal to X at P.

Next we will show that P is an endpoint of a smooth segment in M on which

v • « = 0.

(2.6) ( v • «)„ = v • «„   and   ( v • «)c = y ■ nv

follow from the basic formulas of infinitesimal bending theory, yu = aXu — ßXv

andyv = yXu - aXv.
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By hypothesis the second fundamental forms of X' and X " are positive definite.

The coefficients of the second fundamental form of the mean surface X are

L =\(L' + L")cos a,       M= \(M' + M") cos u,

(2 7)
v " ; n=\(N' + N")cosu,

where the primed quantities are the coefficients of the second fundamental forms

of X' and X" and where cos w = «'•« = «"• n and cos w > 0 if X is regular [2, p.

141]. Therefore where X is regular its second fundamental form is positive definite.

Not both terms in (2.6) can vanish at P since nu, nv, and n are linearly

independent and yP ¥= 0. Hence it follows from the Implicit Function Theorem

that there is a half-open C" segment with one endpoint at P on which v • « = 0.

This segment is not tangent to dM at P for, since m is a parameter on dM,

(yn)u=y-nu = 0. But y X Xu = Zu = 0 at P, so Xu is parallel to v. This

contradicts Xu • nu =£ 0. Therefore the half-open segment enters M and has its other

endpoint in M.

By (2.4)

(2.8) ZuXZv = (y-XuX Xv)y

so v • « = 0 is equivalent to Zu X Zv = 0 at any regular point of X. Therefore

Zu X Zv = 0 at every point of the half-open segment and hence, by continuity,

equals zero at the other end also. By (2.3) X is regular at the other endpoint so v • n

is defined and equals zero there. If y never vanishes the argument may be repeated,

extending the segment to a curve which must end on dM since, as can be seen from

elementary compactness arguments, it cannot intersect itself or spiral toward a

closed curve in M.

We next replace the bending field Z by a bending field which differs from Z by

a trivial bending field in such a way that the corresponding rotation field never

vanishes and so that the preceding argument can be carried out for the new field.

Define Zg = Z — g X X where g is a constant vector to be chosen ap-

propriately. dzg = ( v - g) X dX, so y — g is the rotation vector for Zg. The

surface described by the position vector v cannot contain an open subset of E3.

Therefore there exist vectors g of arbitrarily small absolute value such that y — g

never vanishes on that part of M + dM where X is regular.

Choose local parameters u, v in a neighborhood of P so that P has coordinates

u = 0, v = 0, dM has the equation v = 0, and the half-open segment on which

v • « = 0 has the equation u = 0. Apply the Implicit Function Theorem to the

function / defined by fiu, v, g) = (y - g) ■ n. fu(0, 0, 0) = v • nu\P, fv(0, 0, 0) =

y • nv\P and/(0, 0, 0) = y ■ n\P = 0. By the reasoning above we know that/u(0, 0, 0)

¥= 0 and therefore there exists a C" function u = h(v, g) defined in some neighbor-

hood N of (0, 0) such that f(h(v, g), v, g) = 0 and «(0, 0) = 0. In other words

(y — g) ■ n = 0 on a segment whose equation, for each fixed g of sufficiently small

absolute value, is u = h(v, g). Since h is differentiable, the segment is not tangent

to dM at any point (u, 0) on dM. Hence there is a half-open segment with one

endpoint on dM and the other in M on which ( v — g) • « = 0.
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The arguments following (2.8) may be applied to show that the segment can be

extended to a C" curve with both ends on dM since y — g never vanishes. Simply

replace Z by Zg and y by y — g. We must, however, insure that X is regular on the

segment at each stage of the extension. Since M + dM is compact, the left side of

(2.3) takes a positive minimum on M + dM. Therefore we may suppose that | g\ is

so small that

(2.9) e-XuX Xv + e-Z^X Zgv>0   on M + dM.

Then X is regular at each point where Z^ X Z^ = 0 and hence the extension can

be completed to a curve ending on dM. Call this curve Cg and call its endpoints,

which are on dM, Pg and Qg.

dZg = (y - g) X dX and (y - g) ■ n = 0 along Cg imply that dZg = A« for

some scalar X. Since (y — g) • dn = 0 along Cg and dX ■ dn ¥= 0 by (2.7), X cannot

be zero at any point of Cg for then y — g would be parallel to dX yielding a

contradiction. It follows from (2.9) that e - dZg = Xe ■ n =£ 0 on Cg.

Therefore d(e - Zg) ¥= 0 so e ■ Zg is strictly monotonie on Cg. y may vanish but,

since it does not vanish in a neighborhood of P, this argument (with g = 0) shows

that e ■ Z is monotonie on the curve represented by X(h(v, 0), v) for 0 < v < a, for

some sufficiently small a.

The function u = h(v, g) is continuous for (v, g) in some closed neighborhood of

(0, 0). Therefore as g —» 0, h(v, g) -* h(v, 0) for v in the closed interval 7: 0 < v <

a, if a is sufficiently small. Hence X(h(v, g), v) -* X(h(v, 0), v) for v in 7.

Furthermore, since e ■ zg is continuous, the monotonicity, on 7, of e • Zg has the

same sense for all g, if | g\ is sufficiently small. We may suppose, without loss of

generality, that the monotonicity is increasing. Hence the value of e • Zg at

X(h(a, g), a) is positive and bounded from zero, say > k > 0, as g —» 0. Hence

e - Zg > k > 0 at Qg on dM.

Let g -» 0 through a sequence { g) of values for which y — g never vanishes on

M + dM. Then the corresponding sequence {Qg} has an accumulation point on

dM at which e - Z > 0. This contradicts the boundary condition H4. Hence (2.5)

holds.

Differentiate the second equation of (2.5) along dM to obtain e - X^ = e • X£

and hence by the Gauss equations T\2e • X'u + T2X2e • X'v + M'e ■ ri = T\2e ■ X¿' +

T22e • X¿' + M"e- «". By (2.5) and the boundary conditions (2.1) we have, since

e ■ ri = e ■ n" =£ 0, M' = M" on M. Similarly, differentiating (2.1) along dM and

using (2.5), we get 7/ = L" on dM. From UN' - M'2 = L"N" - M"2 it follows

that W = ./V" and hence that the boundary strips of S' and 5"' are congruent

(under rotations and translations).

The result can now be shown to follow, for example, from [2, Theorem I, p. 160],

which employs an integral identity but it is instructive to prove it entirely by the

present techniques.

If the surfaces are simply connected the theorem follows immediately from the

Main Result of [3] which is proved by the method of this paper and which can be

stated:
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Let two compact, isometric surfaces be given having positive Gauss curvature. If the

surfaces have their normal spherical images in the same compact subset of a

hemisphere of the unit sphere and if the isometry is the identity on the boundary then

the isometry is the identity.

If the surfaces are not simply connected place the surfaces by a rigid motion

(including, possibly, a reflection) preserving the glidebending boundary condition

so that one pair of corresponding boundary components coincides. The surface

strips of this pair can be assumed to coincide as well so that the second fundamen-

tal forms have the same sign, say positive definite, on the boundary components

and hence on the whole surfaces.

Let C0 be the corresponding boundary component of the parameter manifold M.

Then zu X zv = 0 on C0, so by (2.3) the mean surface is regular in a neighborhood

N of C0.

As in the arguments above following (2.8) and (2.9) we replace z by an

equivalent bending field zf = z — f X X, where / is a constant vector close enough

in direction to that of ± e so that /• « $ 0 on M + dM and so that y — f never

vanishes. There exist such vectors with |/| arbitrarily small.

Using those arguments it is easily shown that there exist vectors/so that zfu X zfv

does not vanish on M. X is regular on N; therefore by (2.4)

jfcx^-[(r-/)•*,, x*c](r-/>.

( y — f) ■ Xu X Xv cannot vanish on N if / is chosen as above without contradict-

ing the boundary condition H4. But Y • Xu X Xv = 0 on C0 so that the expression

in brackets is negative or positive on dM and hence on N according as the

direction of/or -/is close to that of e. Since |/| is arbitrarily small Y ■ Xu X XD =

0 on N. Hence Y ■ n vanishes on .A/ and hence, by a familiar open-closed argument,

on M.

Therefore Y • nu = 0 and Y ■ nv = 0 on M. Since the second fundamental forms

of the surfaces are positive definite the Gauss curvature of the mean surface is

positive at regular points. Thus n, nu and nv are linearly independent and hence

y = 0. Hence z is constant on M and the constant must be zero by definition of

c0.

3. Application to general caps and caps. The surfaces 5" and 5"' need not, under

the hypotheses of Theorem 1, have a one-to-one orthogonal projection on a plane

with normal direction e.

In [3] an example is given of a tubular surface with boundary, constructed on a

cylindrical helix, which satisfies the conditions of the theorem but is neither

convex, i.e., is not a subset of a complete convex surface, nor has a representation

in the form z = fix, y) so that Pogorelov's methods in [5] would not apply.

The helix is given by the position vector

X(t) = a(i cos t +j sint + ctk)

where », j, k are orthonormal basis vectors and a and c are positive constants. Let

X(v) be a representation of the helix in terms of arclength v, let vx, v2, t>3 be the
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Frenet triple of the helix, and let r be a positive constant. Then

X(u, v) = X(v) + r(v2(v) cos u + v3(v) sin u)

is a tubular surface whose cross-sections by the normal planes of the helix are

circles of radius r. If w + e < u < § 77- - e, 0 < v < d, then the conditions of

Theorem 1 are satisfied if e is a small enough positive number, r < k~1, where k is

the curvature of the helix, and d is sufficiently large. See [3] for details.

If we further require that S' and S" have a one-to-one projection on a plane

with unit normal e and are simply connected then 5" and S" become what [2, p.

166] defines as general caps (German allgemeine Mützen). That is, a general cap

satisfies this requirement and, in addition, HI and H2.

Theorem 2. Two isometric general caps X' and X" satisfying the boundary

condition e-X' = e-X" which are oriented so that their unit normals ri and n" point

to their respective concave sides and have e- ri > 0 and e-n" > 0 are congruent

under translations and rotations.

A reflection of A" or A"' in a plane parallel to e preserves the boundary

condition, reverses the orientation and changes the sign resp. of e • ri or e • n" so

that various equivalent congruence theorems can be stated, both for general caps

and the somewhat more general surfaces considered in Theorem 1. For example

Theorem 3. Two isometric general caps X' and X" satisfying e-X' = e-X" on

dM with mean curvatures H' > 0, H" < 0 and e ■ ri > 0, e • n" < 0 are congruent

under rigid body motions and reflections.

The author does not know whether two general caps satisfying 77' > 0, H" < 0,

e • ri > 0, e ■ n" > 0 on M + dM and e ■ X' = e ■ X" on dM are congruent. The

method of Theorem 1 requires that H' and H" have the same sign and that e ■ ri

and e-n" have the same sign. Reflection of X" in a plane perpendicular to e would

change the sign of H" and keep that ol en" but would not preserve the boundary

condition in general.

However, if we restrict the boundaries of two isometric general caps to he in a

plane (they are then called simply caps) the conditions of Theorem 1 can be met by

rigid motions plus possible reflections (including reflections in the plane of the

boundary). Further, in this case it is only necessary to assume that one of the

isometric surfaces, say A'', is a cap. It can be proved that A"' is a cap provided that

it has a plane boundary (see [2, pp. 168-171]) so that we have

Theorem 4. Let X' be a cap with e ■ ri > 0 and let X" be any surface isometric to

A" which is simply connected, of class C3, and has a plane boundary. Then A" and X"

are congruent under rigid body motions and reflections in aplane or, for short:

A cap with spherical image in the interior of a hemisphere allows no finite

glidebending.

Remark. In [2] the weaker condition e ■ ri > 0 is assumed in the preceding

theorem. The question of whether a general cap allows a finite glidebending is
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discussed in [2, §80] in the context of a possible proof by an integral identity of

Grotemeyer but is not proved there.

4. Infinitesimal rigidity. It is simple to use the present method to prove the

infinitesimal rigidity of a surface S' of the type considered in Theorem 1, under

glidebending since S", which plays the role of the mean surface in the proof, is

everywhere regular by hypothesis.

Theorem 5. A surface S' which satisfies HI, H2, and H3 of Theorem  1 is

infinitesimally rigid under a bending field Z such that

H4'. e ■ Z = 0 on dS'.

Remark. Infinitesimally rigid means that the only bending fields that S" can have

are of the trivial form c X X + d, where c, d are constants and X is the position

vector of S', i.e., the fields are the velocity fields of instantaneous rotations and

translations. Two bending fields differing by a trivial bending are equivalent.

A bending field satisfying H4' is called an infinitesimal glidebending.

As remarked above, a surface of the type of 5' is more general than a cap, or

even general cap, since it need not have a simple projection on any plane or could

self-intersect.

Sketch of proof. Taking u as parameter on dM, we have e • y X Xu = 0 so y is

a hnear combination

(2.11) v = ae + bXu

on the boundary. If b is identically zero on S' then yu = aue = aXu — ßXv. Since

e • ri > 0, the vectors e, Xu and Xv are linearly independent, so au = a = ß = 0 on

35'. Hence v is equal to a constant c on dS'. y — c is the rotation field for a

bending Z — c X X equivalent to the original one. Since y — c vanishes on dS',

the new bending is trivial on 5".

This follows from the result [4, (4.1)], which is proved by the present methods

and says, briefly, that if a surface of class C" with K > 0 and spherical image in an

open hemisphere has a rotation field v such that y ■ n = 0 on the boundary then

v = 0 on 5'.

Since the new bending is equivalent to the original one, the original is also trivial.

We may therefore assume that b # 0 at some point P of 35". Let aP and bP be

the values of a and b at P. Define Z' = Z — aPe X X.Z' differs trivially from Z,

satisfies the boundary condition e ■ Z'u = 0 and has the rotation field v' = v — aPe.

By (2.11) y' • n = 0 and y' j= 0 at P. Hence ( v' • ri)u and (y' ■ n)v cannot both be

zero at P, as in the proof of Theorem 1. The rest of the argument is sufficiently

similar to the proof of Theorem 1 to be left to the reader. A corollary is

Theorem 6. A cap with spherical image in an open hemisphere is infinitesimally

rigid under glidebending.
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