
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 84, Number 2, February 1982

FINITELY GENERATED CODINGS AND

THE DEGREES R.E. IN A DEGREE d

RICHARD A. SHORE1

Abstract. We introduce finitely generated (partial) lattices which can be used to

code an arbitrary set D. Results of Lerman, Shore and Soare are used to embed

these lattices in the degrees r.e. in D. Thus if the degrees r.e. in and above d are

isomorphic to those r.e. in and above c, d and c are of the same arithmetic degree.

Similar applications are given to generic degrees and general homogeneity ques-

tions.

After the fact one might say that the main purpose of this paper is to introduce

some schemes for doing coding in degree theory via finitely generated sets of

degrees as opposed to the usual methods that employ definable substructures.

Indeed we will describe such schemes and a number of applications to problems in

degree theory. Truthfully, however, the motivation for this paper was the conjec-

ture of Sacks [1966, p. 171] that RED(a), the degrees recursively enumerable in and

above a, are isomorphic to RED = RED(0) for every degree a. Our main result will

refute this conjecture. Indeed we will show that if RED(a) = RED(b) then a and b

are contained in the same arithmetric degree.

As we have said that Sacks [1966] supplies the question behind this paper we

should also note that Lerman, Shore and Soare [1981] will essentially supply the

answer. In that paper we proved that the r.e. degrees are not N0-categorical by

embedding distinct partial lattices 9„ in RED, all of which were generated (under

A and V) by three elements. We will here use the natural limit <$a of these

structures as the core of our coding scheme. Before describing ^u we restate the

definition of a partial lattice.

Definition 1. A structure 9 = (P, < , *£ , V> A) is a partial lattice if there is a

partial order on P containing < and disjoint from ^ such that

(1.1) Va, b, c E P (a V b = c —> c is the least upper bound of a and b in 7*),

(1.2) Va, b, c E P (a /\b = c —» c is the greatest lower bound of a and b in P).

(Note that we are treating A and V as partial functions.)

Now tya has three generators t%, t° and ff. Its elements are t£, t", t2, bg, b" and

6f for n E N. The defining relations determining the structure of <&„ are as

follows.
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FINITELY GENERATED CODINGS 257

(2.1) t? A */ = b£ for n > 0, {i,j,k} = {0,1,2}, and
(2.2) t," = i,"'1 V ¿"_1 for « > 1, i < 3.

The ordering is the obvious one induced by these relations and the requirement

that all the named elements be distinct. See Figure 1 for a picture of 9U in which

solid lines indicate infimums and dashed ones supremums.
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We can now code an arbitrary set A into a finitely generated partial lattice 9A

by adding on one more generator a incomparable with all the old elements, other

new but not necessarily distinct elements cn, and new relations given by

(2.3) cn = aV tï,

(2.4) n E A <=> ¿>f < c„,
with all of the appropriate induced ordering relations and nonordering relations

elsewhere. We claim that we can effectively recover the set A from the jump of any

presentation of 9A ■ Thus if *$A can be embedded in some upper semilattice £, with

< , ^ , V and A preserved, then A is arithmetic in any presentation of £. The

point here is that we can start off with the elements representing a, t%, t° and f2.

Assuming we have inductively calculated tô, t" and t2 it only takes a search

recursive in the jump of the presentation of £ even as a partial ordering to find the

bf and cn. We then ascertain if n E A by asking if b$ < c„. To continue the

induction we then find t,"+x = t" V b" effectively in the presentation.

Now the proof of the main theorem of Lerman, Shore and Soare [1981] actually

shows that any recursively presented partial lattice fy having a property called TPP

can be embedded in RED.

Definition 3. A partial lattice 9 has the trace probe property (TPP) if, for all

p, q E P such that/? ^ Í» there is a finite sequence Q0, {q0}, Qx, {a,}, . . . , Q„ of

subsets of P such that

(3.1) Q0EQXE- ■ ■ EQn.
(3.2)p E Q0 and for all r E QQ u {q0} it is not the case that r < q.

(3.3) For all i < n, Q, u {a,} and {q¡} are trace complete as is Qn. (Q E P is

trace complete if, for all q E Q and a, b, c E P with q < c = a V b, there is a

p E Q such that/» < a orp < b.)

(3.4) For all a, b, c E P such that a /\ b = c and /" < «, if there are ax, bx E Q¡

such that ax < a and bx < b, then either i = 0 and there is an r E Q0 such that

r < c, or /' > 0 and either there is an r E Q¡_x with r < c or no element of

Q¡-\ U {9,-1} is < a or no element of Q¡_x u {q¡_x} is < b.

(3.5) For all a, b, c E P such that a /\b = c and all í < m, either not q¡ < a or

not q¡ < b.

Relativizing the proof shows that if 9 is d-presentable and has TPP then it can

be embedded in RED(d). As for the 9n it is a bit easier to use a modified version

tyft of 9A when verifying TPP. 9.J¡ has the same elements as (3'A and V. A and <

also are identical. We define ^  to hold in 9j¡ only in the following cases:

(2.5) bf ^ tf" for/ < 2, m E u>, and
(2.6) b* îc„iînEA.

Now (2.5) clearly guarantees that the tm and bf" are all distinct, and then (2.6)

shows that the recovery of A from any presentation of any partial ordering

extending 9j¡ must be correct.

The verification that «éPf has TPP is like that for the 9*. We must define the

required sequence Q0, {q0}, Qx, {<?,}, . . . , for each of (2.5) and (2.6). Suppose we

are considering bf on the left of the ^ relation. Fix i < k such that {/,/, k) =

{0, 1, 2}. We set Q0 = {bf, r°} unless bf < cm in which case we let Q0 =

{bf, i,°, a). In either case q0 = tk. Suppose by induction Qu and qu have been
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defined and that qu = r° for v E {/, k). Let {v, v*} = {/, k). Define Qu+X = gu

U {¿>f ~u_1} unless ef"""1 < cm_u_x and a « ß„- In this case let Qu+X = Qu u

{¿>¿m-"_1, a}. In either case set #„+, = /°„. This procedure continues until Qm is

defined and so m = « in the definition of TPP. It is now straightforward to check

that the clauses of TPP are satisfied and we omit this verification.

Thus for any degree a and set A E a, 9* is embeddable in RED(a). Now if

RED(a) s RED(b) then 9j¡ can be embedded in RED(b) and so A is recursive in

the jump of any presentation of RED(b) as an upper semilattice. The standard

presentation of RED(b) in terms of indices Wf for some fixed B E b is recursive in

5(4) and so A < fi(5). Similarly B < Ai5\

Theorem 4. If RED(a) = RED(b) then a and b are contained in the same

arithmetic degree. Indeed, a < b(5).

The calculation that gives a < b(5) here can be improved by embedding more

complicated partial orderings in RED(a). It is immediate from the proof of

Lerman, Shore and Soare [1981] and the limit lemma that any a'-presentable partial

lattice having TPP can be embedded in RED(a). A bit more care would show that

tyg is embeddable in RED(a) for any C which is n2 in A. Thus if RED(a) »

RED(b) then a(2) < b(5).

Corollary 5. The theory of RED(a) with added parameters is not recursive in a.

Proof. Add on parameters corresponding to degrees t£, t°, t2 and b to generate

9B with B E a'.

Corollary 6. The structure RED(a) is not presentable recursively in a even as a

partial ordering.

Proof. If it were and some elements t£, t,, t2, c in it generate a partial lattice 9C,

then C < a' as we have argued. But we can in RED(a) generate 9C with Cea"

for a contradiction.

Turning now to the degrees as a whole, we first note that the recoverability of A

from the jump of the presentation of any partial order in which 9A is embedded

and the fact that one can easily extend 9A to a full lattice show that not every

countable lattice can be embedded in, e.g., <î> [0, W], contrary to some speculations

in Posner [1980, p. 59]. On the other hand, there are, as Posner there expects,

methods of embedding simply presented lattices in fy [0, 0'] much easier than the

initial segments methods of Lerman [1982]. Indeed we can embed 9A or any

a-presentable lattice in ^[a, a'] using finite extension methods in the style of

Kleene and Post [1955]. One also needs a simple representation theorem.

Theorem 7. Let {/>,} enumerate an a-presentable partial lattice 9 (i.e. < , { , V

and A ore partial recursive in a relations) for which < and ^ define a partial order

on ?P. There is then a uniformly recursive in a array of functions an such that

(7.1) Pi < J}«*** m[an(j) = aJJ) -» an(i) = am(i)],

(7.2) Pi V Pj =Pk^> V«, m[ an(i) = am(0&«„(7) = am(f) -» a„(k) = am(k)],
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(7.3)

Pi A Pj = pk&a„(k) = am(k) =>

3ft. «» fs[aWÍí) = «9l(0&a,,(7) = aqi(J)&agi(i) = 0^(1) & aft(/) = am(j)]-

Proof. This is essentially Jonsson [1953] translated into the language of Lerman

[1971] or [1982] which we reproduce here. First we build a representation {/?„}

satisfying (7.1) and (7.2):

/32í+1(0 = 22s+1    Vi,

Í22*+1   if/?,. <Ps,

The check that (7.1) and (7.2) hold is routine.

For any situation as in the hypothesis of (7.3) we can add on the required three

functions and still preserve (7.1) and (7.2):

Suppose/», A Pj = Pk and y(k) = 8(k). If/?, < pj then we can set a, = q2 = q3 =

8. Otherwise we let w, x, y and z be new numbers not in the range of any of our

functions. Now let

y(«)    if /?„ < Pi,

q2(n) = -

<73(") =

y(«)     if/?„ < /?,,

x if/?„ < /?,&/?„ $/?y,

v otherwise;

8(n)    if/?„ < /?,.,

x if/>„ < />,&/>„ ♦/»/.

. 2 otherwise.

Again a straightforward check shows that (7.3) is now satisfied for this situation

and (7.1) and (7.2) remain valid. We can therefore close off under this process to

generate effectively in the presentation of 9 a representation with all the required

properties.

Now suppose we are given an a-presentable partial lattice 9 = {/?,} that we wish

to embed in 9) [a, a']. We assume that < and $ give a complete partial order on

9 and so choose a representation {an} as in Theorem 7. We will build a function

g < a' by specifying finite initial segments of g in a construction recursive in a'.

Our embedding 9 —> 9) [a, a'] will then be given by /?,*-» a\J h¡ where a E a and

«,(«) = aq{n)(i). [If we wish to make the dependence of «, on g explicit we write it as

h¡(g)-] As g < a', deg(a V h¡) E 9 [a, a']. Moreover if /?, < /?, then h¡ < T a V h,,

for to compute h¡(ri) = 0.^^(1) we first compute hj(ri) = agW(j). We then find any

m such that am(j) = «/«). By (7.1) am(i) = ag(n)(i) = «,(«). We next note that if

Pi \/ Pj — Pk then hk <T a V #, V Ä,. To calculate «fc(«) compute «,.(«) = 0U.JJ)

and A,(«) = a^^f). Then find any m such that am(i) = /z,(m) and am(J) = Ay-(«).

By (7.2) am(k) = «ä(„)(A:) = hk(n). Thus our embedding of 9 into ^[a, a'] will

preserve < and V- We must take steps in the construction of g to preserve 4^ and

A as well. We will write «, for a V h¡ below.
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Stage s = <0, e, i,j}. Suppose we have defined gs with dom gs = /. If/?,. < /?,., we

go to the next stage. Otherwise we let n and m witness that/?, <£/?, as in (7.1). Ask

(of a') if there is any finite extension g' of gs such that g'(t) = n and {e}h¿s\t) is

convergent. If not let gs+x = gs u {0, ")} and go on. If so we may choose such a

g' with {e}hJ(g'\t) =£ «g(/)(0 by switching the value of g'(t) from « to m if necessary

since this changes a.g,(t)(i) but does not affect hj(g') by our choice of « and «i. We

then let gs+1 = g' and proceed.

Stage s = <m, e, i,j}, u > 0. If/?, A />, = Pk is not verified in u many steps, we

go on. If it is, we ask (of a') if there are finite extensions g, and g2 of gs with

dom g, = dom g2 and

"*,<«)(*) = "W«)(*)   Vn G dom 8v

and an x such that

{e}hÁg'\x) ^ {e}h^\x).

If not we let gs+x = gs and go on. If so we let the finite functions qx, q2 and q}

extending gs be as required by (7.3), i.e.

"«,(«)( 0 = <*qi(n)('),     «„(»)(/) = <*q¿n)Ü),

%2(n)(0 = «93(n)(0    and   a?3(n)(y) = «g2(„)(7')

for every n E dom g,. (We naturally get dom qx = dom #2 = dorn q3 = dorn f,.)

Thus {e}^g<\x) = {e}**«^*) and {e}*«^*) = {e}**^*).

We now ask if 3q\ extending qx such that {e}W'Xx)l. If not let gi+1 = ç, and

go on. If so choose one. If {e}Wl)(.x) ^ {e^'Xx) let g,+ 1 = o',. If not we have

{e}^g'Xx) = {e^Xx) = 0}Wl)(;c) = {g}W\x) = {e}^9y(x) where ?2 is the

extension of q2 by the same string added on to qx to get q\, so that hj(q'x) = ^(q'f)

by our choice of qx and <72. We now ask if there is an extension q2 of q'2 such that

{e~)hi(q'iXx)\. If not we let gs+x = ç2. If so we choose one. Again if {e}*(,î)(jc) ^

{e}¥«»(jc) we let gs+l = q2. Otherwise we have {e}^g'Xx) = {e}^?y(x) =

{e}^^) = {e}**(,î)(jc) = {<?}*<(9Ï)(;c) where q% is the extension of q3 gotten by

adding on the same string that produces q2 from q2 so that h¡(q2) = hfá'í) by our

choice of q2 and <73. We now have {e}w?î)(x) = {e^'Xx) # (e}V*2)(x) =

{e}^*3>(x) = (e}^(9í)(x) and so we let gs+x = 03 and proceed.

Our construction guarantees that ^ and A are preserved by the usual argu-

ments. Thus we have proved the following.

Theorem 8. Any ^-recursively presented partial lattice which is a partial ordering

such as 9A can be embedded in 9 [a, a'].

One could of course improve on this result to embed more complicated lattices

in 9 [a, a'], but exactly which lattices are so embeddable is not clear. However this

relatively simple result does imply that A is recursive in the jump of any presenta-

tion of ^[a, a']. Thus it can be used to replace coding by the much more difficult

initial segment techniques in various arguments. For example, it immediately

refutes the strong homogeneity conjecture by showing that if ^[a, a'] = ^[b, b']
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then a < b(5) as 9 [b, b'] is b(4)-presentable. Moreover, combined with the lemma of

Harrington and Shore [1981] showing that (3* = {x > a|3y > x Vz(z V y is not a

minimal cover of z)} is caught between É? and 3C* (the degrees above a of sets

arithmetic and hyperarithmetic in a respectively), it refutes the homogeneity

conjecture. Indeed it shows that ifí5D(>a) = óD(>b) then a and b are contained

in the same hyperdegree.

For our final application of these codings, we note that by a variation on the

usual permitting (or full approximation) methods the embedding of 9A into

^[a, a'] described above can be transformed to one into ^[a, c] for any c > a

which is r.e. in a.

The main problem is how to treat the multistep process used in the oracle

construction at stages s = (u, e, i,j} with u > 0 when/?, A Pj = Pk- The idea is to

run several searches and permitting waits in a row. At an appropriate spot a (and

all large enough stages s) we will first look for possible extensions g, and g2 of

gs \ a as described above. If we find them we can also immediately find a,, q2 and

q3 as required. We then will switch to a, when we are permitted to do so. If we are

so permitted we begin searching for q\ as described above. If we find it and are

once again permitted, we switch to q\ if it produces the desired disagreement

(thereby assuring success) or to q'2 if it does not. In this last case, we start our final

search for q2. If we find it and are again permitted, we switch to q2 if it produces

the desired disagreement and otherwise to q'l.

The start-up procedures at new points are much as usual if one thinks of each

subsearch as making progress. If at point a we are looking for a certain extension

but have not yet found it, no further activity is needed for this requirement at latter

points. When we find it we start looking at some latter point b for such extensions

until we are permitted at a. In this construction we may be permitted at a to make

some progress which, rather than assuring success, requires another search. In this

case we suspend work at b until this next extension is found for a (but is not yet

permitted). One argues for the ultimate success of the construction by considering

(after higher priority requirements have been satisfied) the last step in this process

that we reach infinitely often but are never able to move beyond.

Consider now any 1-generic degrees c„ (^ as defined in Jockusch [1980]. By

Theorem 5.1 of that paper c, is r.e. in some a, < c,. Now 9A is embeddable in

9>i%, c,] and so in 9(< c,). Thus if 9(< c,) a 9(< cj then a, < cj4) as 9(< c,)

is C;3)-presentable. Of course c, < a¿ and so we have the following.

Theorem 9. 7/c, and (^ are l-generic degrees (or even each one r.e. in some degree

below it) and 9(< c,) « 9(< Cj) then they are contained in the same arithmetic

degree. Indeed cx < c^.

As there are continuum many generic degrees we immediately get

Corollary 10. There are generic cx and Cj with 9(< c,) s* 9(< cj.

This answers Question 8 of Jockusch [1980].
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