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A CHARACTERIZATION OF THE UNIFORM CLOSURE OF

THE SET OF HOMEOMORPHISMS OF

A COMPACT TOTALLY DISCONNECTED METRIC SPACE

INTO ITSELF

FRANK B. MILES

Abstract. The limit index X(x) of a point x in a compact metric space is defined.

(Roughly: Isolated points have index 0, limit points have index 1, limit points of

limit points have index 2, and so forth.) Then the following theorem is proved.

Theorem 1. Let E be a compact, totally disconnected metric space. Then the

uniform closure of the set of homeomorphisms of E into itself is the set C^ of

continuous functions ¡from E to E satisfying

(1) A(x) < \(f{x))for all x&E,and

(2) if y is not a condensation point of E, then /"'( y) contains at most one x such

that \(x) = \(y).

Further, the set of homeomorphisms of E into E is a dense Gs subset of the complete

metric space Cx.

A concept that we will call the limit index of a point in a compact metric space

was used by Miles in the proof of a theorem in abstract harmonic analysis

[1, Theorem A]. Theorem 1 of this paper can be proved from that theorem. The

proof of Theorem 1 presented in this paper is simpler but similar and does not use

harmonic analysis. The original form of the category argument used here is due to

Kaufman [2]. Adaptations have appeared in [1, 3 and 4].

We first introduce some definitions and notation.

Let E be a compact metric space. For each ordinal a < fi (the first uncountable

ordinal), define Ea as follows. Let E0 = E. Let Ea + X be the set of limit points of Ea.

If ß is a limit ordinal, let Eß = Da</3 Ea. (These definitions are due originally to

Cantor [5]. See also Kuratowski [6, p. 261].)

It is shown in [1] and in [6, p. 262] that Ea = Ea+X for some a < fi. Let aE be the

first ordinal for which this holds and write E for E„ . Observe that E is the set of

condensation points of E.

For a nonempty closed subset F of E, define the limit index of F, denoted X(F),

as follows: If F n E ¥= 0, let X(F) = aE; otherwise let X(F) be the last a such that

F n Ea 9* 0. (A compactness argument, given in [1], shows that such an a exists.)

For x E E, we write X(x) for X({x}).
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Observe that X has the following properties:

(i) If a < aE, then X(x) > a if and only if x E Ea.

(ii) X(F) < aE implies that F n EXiF) is finite.

(iii)^ E F implies that X(y) < X(F).

Let C(E, E) be the set of continuous functions from E to E and C(E, R) be the

set of continuous real-valued functions on E. Let Cfin be the set of continuous

real-valued functions on E with finite range. For h E C(E, R) and e > 0, let

G(h, e) = {/ E Cx: ||y °/ - h^ < e for some y E Cfin}.

Let a" be a metric on E compatible with the topology of E. For / and g in

C(E, E), let D(f, g) = sup{d(f(x), g(x)): x E E).

Theorem 2. Every homeomorphism of E into itself is an element of CA.

Proof. Let / be a homeomorphism of E into E. The second condition in the

definition of CA is trivially satisfied, since / is one-to-one. It remains to show that

the first condition holds or, equivalently, that f(Ea) c Ea for all a. Assume that

f(Ea) E Ea is false for some a and let ß be the first ordinal for which this happens.

We will show that this leads to a contradiction. We have fiEa) SZ. Eß, but, for

a < ß, f(Ea) e Ea. Thus, there is an x E Eß such that v = fix) £ Eß. Let X(y) =

a. Then a < ß. Consider g = f\E^. Clearly, g is a homeomorphism of Ea into Ea.

Since y is an isolated point of Ea, g~x(y) = x is an isolated point of Ea. But x E Ea

and is therefore a limit point of Ea, so we have a contradiction.

Theorem 3. CA is complete in the topology of uniform convergence.

Proof. See [1].

Lemma 1. Let xx, . . ., xn be distinct elements of E; let g E CA and let n > 0. Then

there are distinct elements y„ ■ ■ ■ ,y„ of E such that X(xj) < X(v7) and d(yj, g(xf)) <

tj for 1 < j < n.

Proof. See [1].

Lemma 2. Each G(h, e) is dense in CA.

Proof. Fix h E C(E, R) and e > 0. Let g G CA and tj > 0. We will show that

there is an/ G G(h, e) such that D(f g) < 17.

Write E = U"_i Fj, where the Fj are pairwise disjoint, nonvoid, open and closed

subsets of E, and where h varies less than e and g varies less than tj/2 on each Fj.

Let X(Fj) = a,. If a, < aE, then F, n E is finite, so that we may suppose without

loss of generality that F¡ n E consists of a single point x,. If a, = aE, let Xj be any

point of Fj fl E . By Lemma 1, there are distinct v„ . . . , v„ such that X(yf) > X(xj)

and d(yj, g(xf)) < tj/2, 1 < j < n. Define fix) = y} when x E Fj. Then/ G Cx and

D(f, g) < t/. Now write E = U"=1 Aj, where the A, are disjoint open and closed

sets and y¡ E Aj, 1 < j < n. Define y G Cfin by y( v) = h(xf) when v E Aj. Then,

when x E Fj, we have |y ° fix) — h(x)\ = \h(xf) — h(x)\ < e, so ||y ° / — hW^ < e.

Lemma 3. Each G(h, e) is open in CA.
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Proof. Fix h G C(E, R) and e > 0. Let g G G(h, e) and let y G Cfin be such

that ||y » g - h\\x < e. Let the range of y be { v,, . . . ,y„) and let Fj = -¡~x(yf),

1 < j < n. Let tj > 0 be such that tj < mxnb^{dvst(Ft, Ff)). Then if / G CA and

¡Kf, g) < V we have for all x that fix) E Fj if and only if g(x) E Fj, and, hence,

y °/ = y ° g, so ||y of- hW^ <e.

Proof of Theorem 1. Let/ G CA. Then/ is a homeomorphism of £ into E if

and only if / is one-to-one. Also, if / is not one-to-one, it is clear that there are an

h E C(E, R) and e > 0 such that / G G(h, e). It follows that / is a homeomor-

phism of E into E if and only if/is in every G(h, e).

Let {hn}™=, be dense in C(.E, Ä). Then/ is a homeomorphism of £ into E if and

only if/ is in (~\™k=xG(hn, k~x). Combining this with Theorem 3 and Lemmas 2

and 3 and applying the Baire Category Theorem, we see that the homeomorphisms

in CA form a dense Gs subset of the complete metric space CA. This, together with

Theorem 2, completes the proof.
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