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CALCULATING THE FUNDAMENTAL GROUP

OF AN ORBIT SPACE

M. A. ARMSTRONG

Abstract. Suppose G acts effectively as a group of homeomorphisms of the

connected, locally path connected, simply connected, locally compact metric space

X. Let G denote the closure of G in Homeo^), and N the smallest normal

subgroup of G which contains the path component of the identity of G and all

those elements of G which have fixed points. We show that irx(X/G) is isomorphic

to G/N subject to a weak path lifting assumption for the projection X —* X/G.

Given a topological space X together with a group G of homeomorphisms of X,

what can we say about the fundamental group of the orbit space X/G! Results for

simplicial and discontinuous groups have been given in [1] and [2]. The object of

this note is to produce a theorem which can deal with both discontinuous and

continuous actions.

We shall assume that A' is a connected, locally path connected, locally compact

metric space. Let G be a group of homeomorphisms of X which acts effectively on

X, so that we can think of G as a subgroup of the group Homeo(Ar) of all

homeomorphisms of X endowed with the compact open topology.

Under very reasonable hypotheses (see conditions A,B,C below) the answer to

our question is as follows. Let G denote the closure of G in Homeo(Ar), and let N

be the smallest normal subgroup of G which contains the path component of the

identity of G and all those elements of G which have fixed points. Then if A' is

simply connected the fundamental group of X/G is isomorphic to the quotient

group G/N.

Suppose X fails to be simply connected but has a universal covering space X.

Each homeomorphism g: X -» X lifts to a homeomorphism of X, and any two lifts

of the same g differ by a covering transformation. Therefore we have an action of

an extension of itx(X) by G on X whose orbit space is homeomorphic to X/G, and

we can apply our result in this setting. Details of the group extension and of its

action on X can be found in [5] and [3].

Here are some examples to illustrate a variety of situations in which the result

can be used.

Example 1. Take S2 X R for X and Sx X Z for G, the action being as follows.

The circle acts on S2 by rotation leaving the north and south poles fixed, and acts

trivially on R. The generator of Z reflects S2 in the equator and translates R along
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one unit. Then G = G, N = S1 X {0} and the fundamental group of the orbit

space (which is easily seen to be the Möbius strip) is Z.

Example 2. Consider the action of G = PSL(2, Z) on the upper half plane U as a

group of linear fractional transformations z i-> (az + b)/(cz + d). Then G is a

closed subgroup of Homeo(f7), and is generated by the elements z\-+-\,

z h-» 1 — - both of which have fixed points. Therefore the orbit space U/ G is

simply connected. In fact the region

[z E U\ \z\ > 1, |Re(z)| <±}

is a fundamental region for the action of G, and looking at the way in which its

sides are identified shows that U/G is homeomorphic to a punctured sphere.

Example 3. Consider the group of rationals Q acting on the real line R by

addition. Taking the closure of Q in Homeo(R) gives a copy of R acting on itself

by translation. Since R is path connected, R/Q must be simply connected.

Example 4. Let G be a compact Lie group acting effectively on a simply

connected space X. Assume that either G is connected, or that XG (those points

fixed by all elements of G) is nonempty. In both cases G = G = N and the orbit

space X/ G must be simply connected.

Example 5. Consider an irrational flow on the torus T. More precisely, let R act

on T se S ' X Sx as follows: the real number r sends

(e2"X, e2-riy)      tO      ^Kx + r)e2m(y + rV2)y

This action lifts to an action of irx(T) X R on R2 which has the same orbit space,

namely (m, n, r) E Z X Z X R sends (x, y) to (x + m + r, y + n + rV2 ). One

easily checks that the closure of this group of homeomorphisms of R2 is precisely

the group of all translations of R2. Since this is a path connected group, the orbit

space T/R is simply connected.

Example 6. Let F be a finitely generated free group and X the graph of F

relative to a minimal set S of generators. (That is to say X has a vertex for each

element of F, and an edge joins vertices g and h if and only if h ~ xg is an element of

S or the inverse of an element of S.) Note that X is simply connected because F is

free. The action of F on itself by left multiplication induces a free simplicial action

of F on X. If G is any subgroup of F we have an induced action of G on A' and the

orbit space X/ G is a one-dimensional simplicial complex. The fundamental group

of this orbit space must therefore be free. But in terms of our result G = G and N

is the trivial subgroup, so this fundamental group is just G and we recapture

Nielsen's theorem that any subgroup of F is free.

The conditions we shall need are listed below.

A. The projection X -» X/G has the path lifting property up to homotopy.

B. Given points x, x' E X plus a neighborhood V of x in X, if x' E Gx then

x' E GV.

C. The group G/N acts discontinuously on X/N.

(The technical terms mentioned above are defined as follows. A map /: X —* Y

has the path lifting property up to homotopy if given a path a: I —> Y, and a point

p Ef-xa(0), we can find a path ß: 7->X such that ß(0) = p, fß(l) = a(l) and
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fß as a rel{0, 1}. A group G acts discontinuously on a space X if each point x of X

has a neighborhood V such that gV n K is empty unless g fixes x.)

Proposition 1. If condition B is satisfied then X/G and X/G have the same

homotopy type.

Proof. Let n: A"—»X/G and <f>: X/G-+X/G denote the natural projections.

Define \p: X/G -» X/G as follows; given z G X/G choose a point y E X/G

which satisfies <b(y) = z and set ^(z) = y. Then </><// is the identity map of X/G.

We need to show \fâ homotopic to the identity map of X / G. To this end define

F-.X/G X I^X/Gby

F(v rt_ ¡4"Ky),   o</< l,
ny>'>-[y, t = l.

If F is continuous we are finished. Now given an open set U of X/ G we have

F-\U) =[<p-x^-\U) X[0, 1)] U[V X {1}].

Clearly this is open in X/G X I if U E^~x>p~x(U), in other words if <p(U) E

4>-\u).
Suppose z E <b( U), say (Ky) = z where y E U. We need to check that \j/(z) hes

in U. Let \p(z) = v', then <b(y') = <K^) = z- Choose x, x' E X with images y, y'

respectively in A"/G. The set V = tr~x(U) is an open neighborhood of x in X, and

x' G Gx since x and jc' both map to z in X/G. By hypothesis we must have

x' E GV. Therefore tr(x') lies in ir(GV), that is to say \p(z) hes in U as required.

Corollary 2. 7/ G ¿s a group of isometries of X, then X/ G and X/ G have the

same homotopy type.

Proof. Simply check condition B for a group of isometries. Suppose we have

x, x' E X such that x' E Gx, and let F be a neighborhood of x in A\ Let e denote

the distance from x to X — V, and choose g E G such that g(x) is within e of x'.

Then, since g is an isometry, x' E gV as required.

Condition A is the only one which is hard to check, so we hst several situations

where it is satisfied.

Proposition 3. The projection X—>X/G has the path lifting property up to

homotopy if any one of the following holds.

(a) G acts simplicially on a triangulation of X.

(b) The action of G on X is discontinuous, and the stabiliser of any point is finite.

(c) G is a compact Lie group.

(d) G is a locally compact Lie group and acts properly on X.

(e) X/G is semilocally simply connected.

Proof, (a), (b), (c), (d) can be found in [1], [2], [3], [4], respectively, and in these

cases one can actually hft the given path, rather than just a path which is

homotopic to it.
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Case (e). We use an argument due to Smale [6], though our hypotheses are less

restrictive. Let a: 1—*X/G be the given path, let y0 = a(0) and suppose x0 G

ir~Xy0)- For each point v of X/G choose a neighborhood Uy such that loops in Uy

are null homotopic in A"/G. We can do this since X/G is semilocaUy simply

connected. Given x G ir~l(y) use the local path connectedness of X, and the

continuity of it, to find a path connected neighborhood Py(x) of x such that

ir(Py(x)) E Uy. If x' E -n~x(y) also, set Py(x') = gPy(x) where g is an element of

G which sends x to x'. Let Vy = tr(Py(x)) and note that Vy is a neighborhood of v

in A/ G since w is an open map.

Divide up 7 into N subintervals of equal length, taking TV sufficiently large so

that l/N is a Lebesgue number for the open covering {a~x(Vy)\y E X/G} of 7.

Set 7, = {/G7|0<r< l/N) and note that a(Ix) must be contained in Vy for

some point v G X/G. Therefore v0 G Vy and x0 E Py(x) for some x E ir~x(y).

Now Py(x) is path connected, so we can join x0 to some point of Py(x) n

■7r-\a(l/N)) by a path y: 7^/^v(x). Define ß: IX^>X by /?(/) = y(Nt). Then

/3(0) = x0, *ß(l/N) = a(l/JV), and irß =e¡ a|7, rel{0, 1/7V}, since ttjS and a|7,

have the same end points and both he in Uy. This defines our lift (up to homotopy)

ß over /,; the remaining subintervals are dealt with in a similar manner.

Theorem 4. If X is simply connected and if conditions A, B and C are satisfied,

then irx(X/G) is isomorphic to G/N.

Proof. We shall show that X/N is simply connected. Assume this is done and

note that G/N acts freely on X/N, because N contains all the elements of G which

have fixed points, and that it acts discontinuously by hypothesis. Therefore the

projection X/N -^ X/G is a covering map and we deduce trx(X/G) =* G/N. The

theorem now follows from Proposition 1.

Choose a base point p E X and let q = ir(p), where v now stands for the

projection from X to X/N. Define </>: N —nrx(X/N, q) as follows. Given an

element g G N, join/? to g(p) in A" by a path y and set

<í>(g) = <> ° Y>-

Notice that the choice of y, amongst all paths joining/? to g(p), is irrelevant since X

is simply connected. This function </> is a homomorphism, for given g,, g2 G N, and

having chosen y, joining/» to gx(p) and y2 joining/? to g2(p), use y, ■ g^y^ to join/?

tog,g2(/?). Then

«HSift) = <"■ • (Yi£i(Y2))> = <t ° Yi><> ° Y2> = «KSlM&s)-

The kernel of </> is all of N. For if g lies in the path component of the identity of G,

join e to g by a path {g,|0 < t < 1} in G. Then {g,(p)} joins/? to g(p) in X and

projects to a single point in X/N. Therefore g lies in the kernel of <f>. Now suppose

g is an element of G which fixes some point of X, say g(x) = x. Join /? to x by a

path y, and use y(gy)-1 to join/? to g(p). This path projects to a null homotopic

loop in X/N, so again g lies in the kernel of <p.

It only remains to show that <j> is onto. Given an element of trx(X/N, q)

represent it by a loop a based at q. Now X —> XIG has the path lifting property up
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to homotopy and, since X/N-»X/G is a covering map, so has X—>X/N.

Therefore we can find a path ß in X which begins at /? and which satisfies

77)ß(l) = q, irß ta a rel{0, 1}. Since ß(l) E ir~x(q) there is an element g E N such

that g(p) = /3(1), and by construction <b(g) = (w ° ß} = <a>. This completes the

proof.
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