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CALCULATING THE FUNDAMENTAL GROUP
OF AN ORBIT SPACE

M. A. ARMSTRONG

ABSTRACT. Suppose G acts effectively as a group of homeomorphisms of the
connected, locally path connected, simply connected, locally compact metric space
X. Let G denote the closure of G in Homeo(X), and N the smallest normal
subgroup of G which contains the path component of the identity of G and all
those elements of G which have fixed points. We show that ,(X / G) is isomorphic
to G/ N subject to a weak path lifting assumption for the projection X — X/ G.

Given a topological space X together with a group G of homeomorphisms of X,
what can we say about the fundamental group of the orbit space X /G? Results for
simplicial and discontinuous groups have been given in [1] and [2]. The object of
this note is to produce a theorem which can deal with both discontinuous and
continuous actions.

We shall assume that X is a connected, locally path connected, locally compact
metric space. Let G be a group of homeomorphisms of X which acts effectively on
X, so that we can think of G as a subgroup of the group Homeo(X) of all
homeomorphisms of X endowed with the compact open topology.

Under very reasonable hypotheses (see conditions A, B, C below) the answer to
our question is as follows. Let G denote the closure of G in Homeo(X), and let N
be the smallest normal subgroup of G which contains the path component of the
identity of G and all those elements of G which have fixed points. Then if X is
simply connected the fundamental group of X /G is isomorphic to the quotient
group G/N.

Suppose X fails to be simply connected but has a universal covering space X.
Each homeomorphism g: X — X lifts to a homeomorphism of X, and any two lifts
of the same g differ by a covering transformation. Therefore we have an action of
an extension of 7,;(X) by G on X whose orbit space is homeomorphic to X /G, and
we can apply our result in this setting. Details of the group extension and of its
action on X can be found in [5] and [3].

Here are some examples to illustrate a variety of situations in which the result
can be used.

ExamPLE 1. Take S? X R for X and S' X Z for G, the action being as follows.
The circle acts on S? by rotation leaving the north and south poles fixed, and acts
trivially on R. The generator of Z reflects S2 in the equator and translates R along

Received by the editors February 12, 1981.
1980 Mathematics Subject Classification. Primary 55Q05, 55S99.
© 1982 American Mathematical Society
0002-9939/82/0000-0422/$02.25
267



268 M. A. ARMSTRONG

one unit. Then G = G, N = S' X {0} and the fundamental group of the orbit
space (which is easily seen to be the Mobius strip) is Z.

ExaMPLE 2. Consider the action of G = PSL(2, Z) on the upper half plane U as a
group of linear fractional transformations z > (az + b)/(cz + d). Then G is a
closed subgroup of Homeo(U), and is generated by the elements z> -1,
z+>1 — 1 both of which have fixed points. Therefore the orbit space U/G is

simply connected. In fact the region
{z € U||z] > 1,|Re(2)] < 1}

is a fundamental region for the action of G, and looking at the way in which its
sides are identified shows that U/ G is homeomorphic to a punctured sphere.

ExaMpPLE 3. Consider the group of rationals Q acting on the real line R by
addition. Taking the closure of Q in Homeo(R) gives a copy of R acting on itself
by translation. Since R is path connected, R/Q must be simply connected.

ExaMPLE 4. Let G be a compact Lie group acting effectively on a simply
connected space X. Assume that either G is connected, or that X ¢ (those points
fixed by all elements of G) is nonempty. In both cases G = G = N and the orbit
space X /G must be simply connected.

ExaMPLE 5. Consider an irrational flow on the torus 7. More precisely, let R act
on T = S' X S!as follows: the real number r sends

( e21rix’ e2m’y) to ( eZm'(x+r), ezm'(y+r\/§ )).

This action lifts to an action of 7,(T) X R on R? which has the same orbit space,
namely (m,n,r) EZ X Z X R sends (x,y) to (x + m+r, y + n + rV2). One
easily checks that the closure of this group of homeomorphisms of R? is precisely
the group of all translations of R Since this is a path connected group, the orbit
space T /R is simply connected.

EXAMPLE 6. Let F be a finitely generated free group and X the graph of F
relative to a minimal set S of generators. (That is to say X has a vertex for each
element of F, and an edge joins vertices g and 4 if and only if 4~ 'g is an element of
S or the inverse of an element of S.) Note that X is simply connected because F is
free. The action of F on itself by left multiplication induces a free simplicial action
of Fon X. If G is any subgroup of F we have an induced action of G on X and the
orbit space X/ G is a one-dimensional simplicial complex. The fundamental group
of this orbit space must therefore be free. But in terms of our result G = G and N
is the trivial subgroup, so this fundamental group is just G and we recapture
Nielsen’s theorem that any subgroup of F is free.

The conditions we shall need are listed below.

A. The projection X — X/ G has the path lifting property up to homotopy.

B. Given points x, x’ € X plus a neighborhood ¥ of x in X, if X’ € Gx then
x' € GV.

C. The group G/ N acts discontinuously on X/ N.

(The technical terms mentioned above are defined as follows. A map f: X - Y
has the path lifting property up to homotopy if given a path a: I — Y, and a point
p € f~'a(0), we can find a path B: I — X such that B(0) = p, f8(1) = «(1) and
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JB = a rel{0, 1}. A group G acts discontinuously on a space X if each point x of X
has a neighborhood V such that gF" N V is empty unless g fixes x.)

PROPOSITION 1. If condition B is satisfied then X/G and X/G have the same
homotopy type.

PROOF. Let 7: X — X/G and ¢: X/G — X/G denote the natural projections.
Define y: X/G — X/G as follows; given z € X/G choose a point y € X/G
which satisfies ¢(y) = z and set Y(z) = y. Then ¢y is the identity map of X/ G.

We need to show ¢ homotopic to the identity map of X /G. To this end define
F:X/G X I—>X/G by

, 0 1
F(y,t)={j¢(y) ,:;.<

If F is continuous we are finished. Now given an open set U of X /G we have

FT(U) =[¢7 ¥ (V) [0, D] U[U x {1}].
Clearly this is open in X/G X I if U C ¢~y ~'(U), in other words if ¢(U) C
y~I(U).

Suppose z € ¢(U), say ¢(y) = z where y € U. We need to check that y(z) lies
in U. Let y(z) = y’, then ¢(y’) = ¢(y) = z. Choose x, x’ € X with images y, y
respectively in X /G. The set V =z~ (U) is an open neighborhood of x in X, and
x' € Gx since x and x’ both map to z in X/ G. By hypothesis we must have
x’ € GV. Therefore m(x’) lies in m(GV), that is to say y(z) lies in U as required.

COROLLARY 2. If G is a group of isometries of X, then X /G and X /G have the
same homotopy type.

Proor. Simply check condition B for a group of isometries. Suppose we have
x, x' € X such that x’ € Gx, and let V be a neighborhood of x in X. Let ¢ denote
the distance from x to X — ¥V, and choose g € G such that g(x) is within & of x’.
Then, since g is an isometry, x’ € gV as required.

Condition A is the only one which is hard to check, so we list several situations
where it is satisfied.

PRrOPOSITION 3. The projection X — X/ G has the path lifting property up to
homotopy if any one of the following holds.

(a) G acts simplicially on a triangulation of X.

(b) The action of G on X is discontinuous, and the stabiliser of any point is finite.

(©) G is a compact Lie group.

(d) G is a locally compact Lie group and acts properly on X.

e X/ G is semilocally simply connected.

PROOF. (a), (b), (c), (d) can be found in [1], [2], [3], [4], respectively, and in these
cases one can actually lift the given path, rather than just a path which is
homotopic to it.
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Case (e). We use an argument due to Smale [6], though our hypotheses are less
restrictive. Let a: I > X /(_?— be the given path, let y, = a(0) and suppose x, €
7~ (). For each point y of X /G choose a neighborhood Uy such that loops in Uy
are null homotopic in X/G. We can do this since X/G is semilocally simply
connected. Given x € 7~ !(y) use the local path connectedness of X, and the
continuity of 7, to find a path connected neighborhood Py(x) of x such that
7(Py(x)) C Uy. If x’ € #~'(y) also, set Py(x’) = gPy(x) where g is an element of
G which sends x to x’. Let ¥y = «(Py(x)) and note that ¥y is a neighborhood of y
in X/ G since 7 is an open map.

Divide up I into N subintervals of equal length, taking N sufficiently large so
that 1/N is a Lebesgue number for the open covering {a~'(¥y)|y € X/G} of I.
Set I, = {t € I|0 <t < 1/N} and note that a(/,) must be contained in Vy for
some point y € X/G. Therefore y, € Vy and x, € Py(x) for some x € 7~ !(y).
Now Py(x) is path connected, so we can join x, to some point of Py(x) N
7~ Ya(1/N)) by a path y: I — Py(x). Define 8: I, - X by B(¢) = y(N¢). Then
BO) = x4, «(1/N) = a(1/N), and 7B =~ a|I, rel{0, 1/N}, since 8 and a|l,
have the same end points and both lie in Uy. This defines our lift (up to homotopy)
B over I,; the remaining subintervals are dealt with in a similar manner.

THEOREM 4. If X is simply cclnnected and if conditions A, B and C are satisfied,
then w,(X /G) is isomorphic to G/N.

PrOOF. We shall show that X /N is simply connected. Assume this is done and
note that G/ N acts freely on X/ N, because N contains all the elements of G which
have fixed points, and that it acts discontinuously by hypothesis. Therefore the
projection X/N — X /G is a covering map and we deduce 7,(X/ G) = G/N. The
theorem now follows from Proposition 1.

Choose a base point p € X and let ¢ = #(p), where = now stands for the
projection from X to X/N. Define ¢: N - (X/N, q) as follows. Given an
element g € N, join p to g(p) in X by a path y and set

#(g) =<7 °v).
Notice that the choice of y, amongst all paths joining p to g(p), is irrelevant since X
is simply connected. This function ¢ is a homomorphism, for given g,, g, € N, and
having chosen v, joining p to g,(p) and v, joining p to g,(p), use v, - gi(y,) to join p
to g, 85(p)- Then

#(2:8) = {7 ° (11£1(v2)) = {7 ° ¥ ){7 ° v2) = ¢(81)$(82)-

The kernel of ¢ is all of N. For if g lies in the path component of the identity of G,
join e to g by a path { g0 <7< 1} in G. Then {&(p)} joins p to g(p) in X and
projects to a single point in X / N. Therefore g lies in the kernel of ¢. Now suppose
g is an element of G which fixes some point of X, say g(x) = x. Join p to x by a
path v, and use y(gy)~! to join p to g(p). This path projects to a null homotopic
loop in X/ N, so again g lies in the kernel of ¢.

It only remains to show that ¢ is onto. Given an element of =,(X/N, q)
represent it by a loop « based at g. Now X — X /G has the path lifting property up
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to homotopy and, since X/N — X/G is a covering map, so has X — X/N.
Therefore we can find a path 8 in X which begins at p and which satisfies
7B(1) = ¢, 7B ~ a rel{0, 1}. Since B(1) € =~ '(g) there is an element g € N such
that g(p) = B(1), and by construction ¢(g) = (7 ° 8) = {a). This completes the
proof.

REFERENCES

1. M. A. Armstrong, On the fundamental group of an orbit space, Proc. Cambridge Philos. Soc. 61
(1965), 639—646.

2. , The fundamental group of the orbit space of a discontinuous group, Proc. Cambridge Philos.
Soc. 64 (1968), 299-301.

3. G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.

4. R. S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73
(1961), 295-323.

5. F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. (3) 16
(1966), 635-650.

6. S. Smale, A note on open maps, Proc. Amer. Math. Soc. 8 (1957), 391-393.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DURHAM, DURHAM CITY, ENGLAND



