CALCULATING THE FUNDAMENTAL GROUP OF AN ORBIT SPACE

M. A. ARMSTRONG

ABSTRACT. Suppose G acts effectively as a group of homeomorphisms of the connected, locally path connected, simply connected, locally compact metric space X. Let \overline{G} denote the closure of G in $\operatorname{Homeo}(X)$, and N the smallest normal subgroup of \overline{G} which contains the path component of the identity of \overline{G} and all those elements of \overline{G} which have fixed points. We show that $\pi_1(X/G)$ is isomorphic to \overline{G}/N subject to a weak path lifting assumption for the projection $X \to X/\overline{G}$.

Given a topological space X together with a group G of homeomorphisms of X, what can we say about the fundamental group of the orbit space X/G? Results for simplicial and discontinuous groups have been given in [1] and [2]. The object of this note is to produce a theorem which can deal with both discontinuous and continuous actions.

We shall assume that X is a connected, locally path connected, locally compact metric space. Let G be a group of homeomorphisms of X which acts effectively on X, so that we can think of G as a subgroup of the group Homeo(X) of all homeomorphisms of X endowed with the compact open topology.

Under very reasonable hypotheses (see conditions A, B, C below) the answer to our question is as follows. Let \overline{G} denote the closure of G in Homeo(X), and let N be the smallest normal subgroup of \overline{G} which contains the path component of the identity of \overline{G} and all those elements of \overline{G} which have fixed points. Then if X is simply connected the fundamental group of X/G is isomorphic to the quotient group \overline{G}/N .

Suppose X fails to be simply connected but has a universal covering space \tilde{X} . Each homeomorphism $g\colon X\to X$ lifts to a homeomorphism of \tilde{X} , and any two lifts of the same g differ by a covering transformation. Therefore we have an action of an extension of $\pi_1(X)$ by G on \tilde{X} whose orbit space is homeomorphic to X/G, and we can apply our result in this setting. Details of the group extension and of its action on \tilde{X} can be found in [5] and [3].

Here are some examples to illustrate a variety of situations in which the result can be used.

EXAMPLE 1. Take $S^2 \times \mathbf{R}$ for X and $S^1 \times \mathbf{Z}$ for G, the action being as follows. The circle acts on S^2 by rotation leaving the north and south poles fixed, and acts trivially on \mathbf{R} . The generator of \mathbf{Z} reflects S^2 in the equator and translates \mathbf{R} along

Received by the editors February 12, 1981. 1980 Mathematics Subject Classification. Primary 55Q05, 55S99.

one unit. Then $G = \overline{G}$, $N = S^1 \times \{0\}$ and the fundamental group of the orbit space (which is easily seen to be the Möbius strip) is \mathbb{Z} .

EXAMPLE 2. Consider the action of $G = PSL(2, \mathbb{Z})$ on the upper half plane U as a group of linear fractional transformations $z \mapsto (az + b)/(cz + d)$. Then G is a closed subgroup of Homeo(U), and is generated by the elements $z \mapsto -\frac{1}{z}$, $z \mapsto 1 - \frac{1}{z}$ both of which have fixed points. Therefore the orbit space U/G is simply connected. In fact the region

$$\left\{z \in U | |z| \geqslant 1, |\operatorname{Re}(z)| \leqslant \frac{1}{2}\right\}$$

is a fundamental region for the action of G, and looking at the way in which its sides are identified shows that U/G is homeomorphic to a punctured sphere.

EXAMPLE 3. Consider the group of rationals Q acting on the real line R by addition. Taking the closure of Q in Homeo(R) gives a copy of R acting on itself by translation. Since R is path connected, R/Q must be simply connected.

EXAMPLE 4. Let G be a compact Lie group acting effectively on a simply connected space X. Assume that either G is connected, or that X^G (those points fixed by all elements of G) is nonempty. In both cases $G = \overline{G} = N$ and the orbit space X/G must be simply connected.

EXAMPLE 5. Consider an irrational flow on the torus T. More precisely, let \mathbb{R} act on $T \cong S^1 \times S^1$ as follows: the real number r sends

$$(e^{2\pi ix}, e^{2\pi iy})$$
 to $(e^{2\pi i(x+r)}, e^{2\pi i(y+r\sqrt{2})})$.

This action lifts to an action of $\pi_1(T) \times \mathbf{R}$ on \mathbf{R}^2 which has the same orbit space, namely $(m, n, r) \in \mathbf{Z} \times \mathbf{Z} \times \mathbf{R}$ sends (x, y) to $(x + m + r, y + n + r\sqrt{2})$. One easily checks that the closure of this group of homeomorphisms of \mathbf{R}^2 is precisely the group of all translations of \mathbf{R}^2 . Since this is a path connected group, the orbit space T/\mathbf{R} is simply connected.

EXAMPLE 6. Let F be a finitely generated free group and X the graph of F relative to a minimal set S of generators. (That is to say X has a vertex for each element of F, and an edge joins vertices g and h if and only if $h^{-1}g$ is an element of S or the inverse of an element of S.) Note that X is simply connected because F is free. The action of F on itself by left multiplication induces a free simplicial action of F on X. If G is any subgroup of F we have an induced action of F on F and the orbit space F is a one-dimensional simplicial complex. The fundamental group of this orbit space must therefore be free. But in terms of our result F and F is the trivial subgroup, so this fundamental group is just F and we recapture Nielsen's theorem that any subgroup of F is free.

The conditions we shall need are listed below.

A. The projection $X \to X/\overline{G}$ has the path lifting property up to homotopy.

B. Given points $x, x' \in X$ plus a neighborhood V of x in X, if $x' \in \overline{G}x$ then $x' \in GV$.

C. The group \overline{G}/N acts discontinuously on X/N.

(The technical terms mentioned above are defined as follows. A map $f: X \to Y$ has the path lifting property up to homotopy if given a path $\alpha: I \to Y$, and a point $p \in f^{-1}\alpha(0)$, we can find a path $\beta: I \to X$ such that $\beta(0) = p$, $f\beta(1) = \alpha(1)$ and

 $f\beta \simeq \alpha \text{ rel}\{0, 1\}$. A group G acts discontinuously on a space X if each point x of X has a neighborhood V such that $gV \cap V$ is empty unless g fixes x.)

PROPOSITION 1. If condition B is satisfied then X/G and X/\overline{G} have the same homotopy type.

PROOF. Let $\pi: X \to X/G$ and $\phi: X/G \to X/\overline{G}$ denote the natural projections. Define $\psi: X/\overline{G} \to X/G$ as follows; given $z \in X/\overline{G}$ choose a point $y \in X/G$ which satisfies $\phi(y) = z$ and set $\psi(z) = y$. Then $\phi\psi$ is the identity map of X/\overline{G} .

We need to show $\psi \phi$ homotopic to the identity map of X/G. To this end define $F: X/G \times I \to X/G$ by

$$F(y, t) = \begin{cases} \psi \phi(y), & 0 \le t < 1, \\ y, & t = 1. \end{cases}$$

If F is continuous we are finished. Now given an open set U of X/G we have

$$F^{-1}(U) = \left[\phi^{-1}\psi^{-1}(U) \times [0,1)\right] \cup \left[U \times \{1\}\right].$$

Clearly this is open in $X/G \times I$ if $U \subseteq \phi^{-1}\psi^{-1}(U)$, in other words if $\phi(U) \subseteq \psi^{-1}(U)$.

Suppose $z \in \phi(U)$, say $\phi(y) = z$ where $y \in U$. We need to check that $\psi(z)$ lies in U. Let $\psi(z) = y'$, then $\phi(y') = \phi(y) = z$. Choose $x, x' \in X$ with images y, y' respectively in X/G. The set $V = \pi^{-1}(U)$ is an open neighborhood of x in X, and $x' \in \overline{G}x$ since x and x' both map to z in X/\overline{G} . By hypothesis we must have $x' \in GV$. Therefore $\pi(x')$ lies in $\pi(GV)$, that is to say $\psi(z)$ lies in U as required.

COROLLARY 2. If G is a group of isometries of X, then X/G and X/\overline{G} have the same homotopy type.

PROOF. Simply check condition B for a group of isometries. Suppose we have $x, x' \in X$ such that $x' \in \overline{G}x$, and let V be a neighborhood of x in X. Let ε denote the distance from x to X - V, and choose $g \in G$ such that g(x) is within ε of x'. Then, since g is an isometry, $x' \in gV$ as required.

Condition A is the only one which is hard to check, so we list several situations where it is satisfied.

PROPOSITION 3. The projection $X \to X/\overline{G}$ has the path lifting property up to homotopy if any one of the following holds.

- (a) G acts simplicially on a triangulation of X.
- (b) The action of G on X is discontinuous, and the stabiliser of any point is finite.
- (c) \overline{G} is a compact Lie group.
- (d) \overline{G} is a locally compact Lie group and acts properly on X.
- (e) X/\overline{G} is semilocally simply connected.

PROOF. (a), (b), (c), (d) can be found in [1], [2], [3], [4], respectively, and in these cases one can actually lift the given path, rather than just a path which is homotopic to it.

Case (e). We use an argument due to Smale [6], though our hypotheses are less restrictive. Let $\alpha: I \to X/\overline{G}$ be the given path, let $y_0 = \alpha(0)$ and suppose $x_0 \in \pi^{-1}(y_0)$. For each point y of X/\overline{G} choose a neighborhood Uy such that loops in Uy are null homotopic in X/\overline{G} . We can do this since X/\overline{G} is semilocally simply connected. Given $x \in \pi^{-1}(y)$ use the local path connectedness of X, and the continuity of π , to find a path connected neighborhood Py(x) of x such that $\pi(Py(x)) \subseteq Uy$. If $x' \in \pi^{-1}(y)$ also, set Py(x') = gPy(x) where g is an element of \overline{G} which sends x to x'. Let $Vy = \pi(Py(x))$ and note that Vy is a neighborhood of y in X/\overline{G} since π is an open map.

Divide up I into N subintervals of equal length, taking N sufficiently large so that 1/N is a Lebesgue number for the open covering $\{\alpha^{-1}(Vy)|y\in X/\overline{G}\}$ of I. Set $I_1=\{t\in I|0\leqslant t\leqslant 1/N\}$ and note that $\alpha(I_1)$ must be contained in Vy for some point $y\in X/\overline{G}$. Therefore $y_0\in Vy$ and $x_0\in Py(x)$ for some $x\in \pi^{-1}(y)$. Now Py(x) is path connected, so we can join x_0 to some point of $Py(x)\cap \pi^{-1}(\alpha(1/N))$ by a path $\gamma\colon I\to Py(x)$. Define $\beta\colon I_1\to X$ by $\beta(t)=\gamma(Nt)$. Then $\beta(0)=x_0,\ \pi\beta(1/N)=\alpha(1/N),$ and $\pi\beta\simeq\alpha|I_1$ rel $\{0,1/N\},$ since $\pi\beta$ and $\alpha|I_1$ have the same end points and both lie in Uy. This defines our lift (up to homotopy) β over I_1 ; the remaining subintervals are dealt with in a similar manner.

THEOREM 4. If X is simply connected and if conditions A, B and C are satisfied, then $\pi_1(X/G)$ is isomorphic to \overline{G}/N .

PROOF. We shall show that X/N is simply connected. Assume this is done and note that \overline{G}/N acts freely on X/N, because N contains all the elements of \overline{G} which have fixed points, and that it acts discontinuously by hypothesis. Therefore the projection $X/N \to X/\overline{G}$ is a covering map and we deduce $\pi_1(X/\overline{G}) \cong \overline{G}/N$. The theorem now follows from Proposition 1.

Choose a base point $p \in X$ and let $q = \pi(p)$, where π now stands for the projection from X to X/N. Define $\phi: N \to \pi_1(X/N, q)$ as follows. Given an element $g \in N$, join p to g(p) in X by a path γ and set

$$\phi(g) = \langle \pi \circ \gamma \rangle.$$

Notice that the choice of γ , amongst all paths joining p to g(p), is irrelevant since X is simply connected. This function ϕ is a homomorphism, for given $g_1, g_2 \in N$, and having chosen γ_1 joining p to $g_1(p)$ and γ_2 joining p to $g_2(p)$, use $\gamma_1 \cdot g_1(\gamma_2)$ to join p to $g_1g_2(p)$. Then

$$\phi(g_1g_2) = \langle \pi \circ (\gamma_1g_1(\gamma_2)) \rangle = \langle \pi \circ \gamma_1 \rangle \langle \pi \circ \gamma_2 \rangle = \phi(g_1)\phi(g_2).$$

The kernel of ϕ is all of N. For if g lies in the path component of the identity of \overline{G} , join e to g by a path $\{g_t|0 \le t \le 1\}$ in \overline{G} . Then $\{g_t(p)\}$ joins p to g(p) in X and projects to a single point in X/N. Therefore g lies in the kernel of ϕ . Now suppose g is an element of \overline{G} which fixes some point of X, say g(x) = x. Join p to x by a path y, and use $y(gy)^{-1}$ to join p to g(p). This path projects to a null homotopic loop in X/N, so again g lies in the kernel of ϕ .

It only remains to show that ϕ is onto. Given an element of $\pi_1(X/N, q)$ represent it by a loop α based at q. Now $X \to X/\overline{G}$ has the path lifting property up

to homotopy and, since $X/N \to X/\overline{G}$ is a covering map, so has $X \to X/N$. Therefore we can find a path β in X which begins at p and which satisfies $\pi\beta(1) = q$, $\pi\beta \simeq \alpha$ rel $\{0, 1\}$. Since $\beta(1) \in \pi^{-1}(q)$ there is an element $g \in N$ such that $g(p) = \beta(1)$, and by construction $\phi(g) = \langle \pi \circ \beta \rangle = \langle \alpha \rangle$. This completes the proof.

REFERENCES

- 1. M. A. Armstrong, On the fundamental group of an orbit space, Proc. Cambridge Philos. Soc. 61 (1965), 639-646.
- 2. _____, The fundamental group of the orbit space of a discontinuous group, Proc. Cambridge Philos. Soc. 64 (1968), 299-301.
 - 3. G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
- 4. R. S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295-323.
- 5. F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. (3) 16 (1966), 635-650.
 - 6. S. Smale, A note on open maps, Proc. Amer. Math. Soc. 8 (1957), 391-393.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DURHAM, DURHAM CITY, ENGLAND