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ON FINITELY DOMINATED CW COMPLEXES

JERZY DYDAK

Abstract. Let ty be the class of all CW complexes homotopy dominated by finite

CW complexes. In this paper we prove the following theorem.

Theorem. Suppose a connected CW complex X e <>D is a union of two connected

subcomplexes X¡, X2 with Xx n X2 - X0 e 6B. Then Xx, X2 G «D if one of the

following conditions is satisfied:

(i) ttjÍXq, x) -» irx(X, x)is a monomorphism for each x e X&

(ii) itx(X¡) —* Wi(X~) is a monomorphism for i = 1, 2 and irx{Xx), ir^Jf^) are finitely

presented.

1. Introduction. Let ^ be the class of all CW complexes homotopy dominated by

finite CW complexes. In this note we discuss the following question: Suppose a

connected CW complex Ä- is a union of two connected subcomplexes Xx and X2.

Under what conditions does X G ty and Xx n X2 = XQ G fy imply that Xx,

X2G öD?

In [4, p. 48] L. C. Siebenmann answered the above question positively in case

where ttx(X¡) —» trx(X) has a left inverse for i = 1,2 and asked (p. 49) whether the

condition that irx(X¡) —» ttx(X) is a monomorphism, i" = 1, 2, is sufficient for Xx and

X2 to be in <$.

The following results give partial answers to Siebenmann's question.

1.1. Theorem. Suppose a connected CW complex X G tf) is a union of two

connected subcomplexes Xx and X2 with Xx n X2 = X0 G fy. If, for i = 1,2,

(i) itx(X,) -> ttx(X) is a monomorphism and

(ü) ».(JÇ) is finitely presented,

thenXx,X2 G 6Ù.

1.2. Theorem. Let X G ^ satisfy the hypotheses of Theorem 1.1. If wx(Xx)->

ttx(X) is a monomorphism, irx(Xx)  is finitely presented and Xq, X2 G 6D,  then

Xx G ^D.

1.3. Theorem. Let X G ^ satisfy the hypotheses of Theorem 1.1. If itx(X¿)^>

ttx(X) is a monomorphism, then conditions (i) and (ii) of Theorem 1.1 hold. In

particular, Xx, X2G 6Í).

Examples in [4, pp. 49, 83-89] show that some restriction on fundamental groups

is necessary.
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2. Proof of Theorem 1.1. We need the following proposition.

2.1. Proposition. Suppose G is a subgroup of a group H and A is a G module. If

Z[H] ®G A is a projective (finitely generated) H module, where for the tensor

product Z[H] has the right G module structure given by (? «■* H, then A is projective

(finitely generated).

Proof (due to the referee). The statement about projective modules is obvi-

ous. Although the part concerning finite generation is well known, no convenient

proof is in the literature and a proof is therefore given.

Since G is a subgroup of H, Z[H] is a free right Z[G] module. In fact, if

{tx G H\X G A} is a transversal (i.e. a set of H/G coset representatives) for G in

H, then {tx\X G A} is a Z[G] basis for Z[H\. Without loss of generality, we may

assume that the identity coset IG is represented by 1 G H. It follows easily that if

M is any left Z[G] module, then, as Z[G] modules, Z[H] ®c M = 2Xea *\M

where one tx = 1 (i.e. M is a Z[G] direct summand of Z[H] ®G M).

Now, let ax, . . . , ak G Z[H] <8>G A be a finite set of Z[H] generators. Then each

a¡ can be written as a tuple a¡ = (a,x) (a G A), where a} G txA for all X. In fact,

$ = 'a*/\ for some tf* G A and bf ^ 0, for only finitely many X. Let B be the

Z[G] submodule of A generated by {6,x|i = 1, . . ., k, X G A}. Then B is finitely

generated and the inclusion i: B -* A induces an isomorphism 1 <8> i: Z[H] ®e B

-+Z[H]®GA. Since

Z[H] ®GB^ Z[H] ®GA^Z[H] ®G(A/B)^0

is exact, it follows that Z[H] <S>G (A/B) = 0. Since A/B is a direct summand of

this module, it follows that A/B = 0 and that A is finitely generated.

Now, the proof of Theorem 1.1 is divided into three cases.

Case 1. Assume: 1. A'0 is connected, 2. X0 is homotopy equivalent to a finite CW

complex AT0 and 3. X is homotopy equivalent to a finite CW complex AT.

Let/0: AT0 -^^„bea homotopy equivalence. For each i = 1, 2 we can extend f0

to F: AT/ -» X¡ such that F induces an epimorphism of fundamental groups and AT'

is the wedge of AT0 and a finite number of circles. By Lemma 3.11 in [4, p. 18], the

kernel of irx(fi) can be expressed as the normal closure of a finite set of elements of

ttx(K¡). Therefore, by attaching a finite number of 2-cells to AT/ we can form a finite

CW complex A, and an extension/: AT,-»AT of f0, inducing an isomorphism of

fundamental groups. Thus the following proposition Pm holds for m = 1.

Pm: There exists a finite CW complex Lm with dim Lm < max(m, 2 + dim ATq)

that is a union of subcomplexes Kx and K2 with intersection equal to AT,,, and a map

/: Lm^>X so that, restricted to Kk, k = 0, 1, 2, / gives a map .4: AT* -» Xk which is

w-connected for k = 1, 2, a homotopy equivalence for k = 0 and each irx(fk),

k = 1, 2, is an isomorphism.

Suppose for induction that Pm_! holds, m > 2, and consider the exact sequence

0 ^ C„(M(/0), K0) ~* C,(M(/,), A^,)

©C,(M(/2), K2) ̂  C.(M(f), Lm_x)^0,
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where S = p X(S), p: M(f) —» M(f) being the universal covering projection of the

mapping cylinder M(f) of /: Lm_x -» X and CM(Y, Z) the chain complex of a CW

pair (Y,Z). _       _

Since f0: K0 -» X0 is a homotopy equivalence, so is AT0 -» M(f¿). Thus,

H^(M(f0), K0) = 0 and we have an isomorphism of ttx(X) modules Hn(M(fx), AT,)

QH¿MUd,Ka and Hn(M(f), £„,_,) for « > 0. Hm(M(f), Lm_x) is the first
nonvanishing homology group of (M(f), Lm_x) and, by Lemma 4.6 in [4] (see also

[5, Theorem A]), it is finitely generated. Hence, both Hm(M(f), AT,), i = 1, 2, are

finitely generated trx(X) modules.

It is well known (see [4, Lemma 6.71) that

C,(M(f), K,) = Z[*X(X)} ® C,(M(f), %)

where the tensor product is over Z[irx(X,)] and M(f¡), K¡ denote universal covers.

Since irx(X¡) -» ttx(X) is monomorphic, Z[irx(X)] is a free Z[ttx(X¡)] module and

thus tensoring with it is an exact functor. Hence,

Hm(M(f), K) = Z[ttx(X)\ ® Hm(M(fi), K,)

where again the tensor product is over Z[w,(AT)]. By Proposition 2.1, Hm(M(f¡), K¡)

is a finitely generated trx(X¡) module, / = 1, 2. As in [5] (see the proof of Theorem

A) we can obtain Lm and/': Lm -» X by attaching a finite number of w-cells to AT,

and K2 and then extending/onto Lm. This completes the induction.

The proof that Xx, X2 G ^ is completed as follows. Take an (m — l)-connected

map /: L -» X as in Pm_„ where m > 1 + max(dim AT^, dim AT, 2). Then

Hm(M(f), L) is finitely generated, projective and concentrated in dimension m (see

[5, Theorem A and Lemma 2.1]). Since

Hn(M(fx), Kx) ® H„(M(f2), K2) » H„(M(f), L),

for each n, we infer that Hif(M(fl), A,) is finitely generated, projective over

Z[irx(X)] and concentrated in dimension m for i = 1, 2. Hence, H^(M(f¡), A,) is a

finitely generated projective over Z[77-,(AT)] and concentrated in dimension m (by

Proposition 2.1). It follows from [4, Lemma 6.2] that A",, X2 G 6D.

Case 2. Assume X0 is connected. Then, X X S' and XQX Sx have the homotopy

type of finite complexes (see [2]) and by Case 1 we have, Xx X Sx, X2 X Sx G 6Î),

which implies Xx, X2 G ^.

General case. If X0 is not connected, we attach a finite number of 1-cells

ex, . . . ,en to it so that X¿ = X0 u ex u • • • U en is connected. By Case 2, both

X[ = Xx u X¿ and X2 = X2 u X¿ belong to <$. Since X¡ is a retract of X¡, i = 1,2,

we infer Xx, X2 G <$.

Remark. Our proof of Theorem 1.1 is a simplified version of the original

Siebenmann's proof of Complement 6.6(b) (see [4, pp. 48, 54-56]).

Theorem 1.2 can be proved similarly.
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3. Proof of Theorem 13. Theorem 1.3 is basically an algebra theorem and will be

derived from the following result.

3.1. Theorem. // the free product P = (G * H: A = B,q>} with amalgamation is

finitely presented and A is finitely presented, then both G and H are finitely presented.

For the notion of the free product P = <G * H: A = B,<p} (denoted also by

G * A H) of groups G and H, amalgamating subgroups A of G and B of H by an

isomorphism œ, see [1, p. 179].

The proof of this theorem depends on two lemmata.

3.2. Lemma. If G * A H is finitely generated, so are G and H.

Proof. Let {gx\X G L) and {h^p G M) he generators for G and H respec-

tively. By [1, p. 187], {gx, AJA G L, p G M) generate G * A H. Since this group is

finitely generated, there exist finitely many of the gxs and AJs, gx, . . ., gq,

hx, . . . ,hr such that these elements generate G * A H. But theng,, . . . ,gq generate

G and hx, . . . ,hr generate H.

Suppose now that A has presentation

<Z„ ...,ZS; WX(ZX, ...,ZS),..., Wp(Zx, ..., Z,)>.

Then G has a presentation

<A-„ . . ., Xq, Z„ . . . , Zs, lA(AT, Zk), WX(ZX, ...,ZS),..., Wp(Zx, ..., Zs)>,

where X G L, UX(X¡, Zk) is a word in (possibly all) the AT's and Zks, and {AT}

maps to a finite set of generators {g,} for G. Suppose that H is presented similarly

as

<y„ . . ., Y„ Z„ . . ., Zs, V^Yj, Zx), WX(ZX, ..., Zs), Wp(Zx, ..., z,)>,

where p G N.

3.3. Lemma. G * a H has the presentation

\XX, . . . , Xq, Yx, . . . , Yr, Z,,. . . , Zs;

Ux(Xt, Zk), Vj^Xj, Z,), . . ., Wp(Zx, ..., z,)>.

Proof. This is well known (see [3]).

Proof of Theorem 3.1. We present A, G, H as above and consider the presenta-

tion of G * A H given by 3.3. Since G * A H is finitely presented, it has a

presentation on the above generators containing only finitely many of the above

relators. Thus G * A H may be presented as

\XX, . . . , Xq, Yx, . . . , Yr, Z,, . . . , Zs; UX(X¡, Zk), . . ., Um(X¡, Zk),

Vx( Yj, Z,),     . . . , V„( Yj, Z,), WX(ZX, ...,ZS),..., Wp(Zx, ..., Z,)>.

Let

G' = <A-„ . . ., Xq, Z„ . . . , Zs, c/,(AT, Zk), ..., UJX„ Zk),

wx(zx,...,zs),..., wp(zx,...,zs)y.
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Then there is an obvious epimorphism uV: G' -» G that maps the subgroup

A' G G'  generated by Z,, . . . , Zs  isomorphically onto A. Similarly,  if H' =

<YX.Yr, Z„ . . . , Zs;  Vx(Yj, Z,), . . . , Vn(Yp Z,), WX(ZX-, Zs),
Wp(Zx, . . ., Zs)}, there is an epimorphism \¡/": H' -» H that maps the subgroup

generated by Z,, . . ., Zs isomorphically onto A. Thus »// and \p" induce a homo-

morphism \p: G' * A H' -» G * A H. Since the presentation for G' * A H' is identi-

cal with that of G * A H, uV is an isomorphism. It follows easily that \p' and »//" are

isomorphisms and, therefore, that G and H are finitely presented.

Proof of Theorem 1.3. Suppose X0 is connected. Then trx(X) is the free product

of ttx(Xx) and tr^X-^ with amalgamation of

im(trx(X0)^TTx(Xx))    and   im(vx(X0) -* trx(X2))

(see [1, p. 180]). Therefore w,(AT) —» irx(X) is a monomorphism for i" = 1, 2 and, by

Theorem 3.1, trx(Xx) and tt^X^ are finitely presented.

By Theorem 1.1, Xx, X1G6i.

If A'o is not connected, then we apply the trick used in General Case of the proof

of Theorem 1.1.

I am indebted to the referee for supplying me with the proof of Proposition 2.1

and for simplifying the proof of Theorem 3.1.
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