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SUFFICIENT CONDITIONS FOR A BUNDLE-LIKE FOLIATION

TO ADMIT A RIEMANNIAN SUBMERSION

ONTO ITS LEAF SPACE

RICHARD H. ESCÓBALES, JR.

To Bill Huebsch

Abstract. This note furnishes a necessary and sufficient condition for a bundle-

like foliation to be defined globally by a Riemannian submersion.

Introduction. The purpose of this note is to furnish sufficient conditions for a

foliated manifold with a bundle-like metric to admit a Riemannian submersion

onto its leaf space in a natural way. The main result, Theorem 2.2, says that this

will occur whenever all the leaves are closed and the holonomy of each leaf, with

respect to the foliation, is trivial. Since a foliation with a bundle-like metric can be

thought of as one being defined locally by Riemannian submersions, this note

provides, on the basis of a result of Hermann, a necessary and sufficient condition

for the foliation to be defined globally by a Riemannian submersion. Several

applications of the result to recover known theorems conclude the paper.

This work was done while the author was on sabbatical from Canisius College.

He is grateful to the college for that opportunity. He is grateful to Professors

Graver and Church of Syracuse University for their hospitality while in Syracuse,

to Professor Blumenthal for some reprints, and to Professors Boothby, Cordon and

Jensen who organized an NSF regional conference on foliations at Washington

University.

1. Let M he a C°° differentiable (Hausdorff) manifold which throughout this

paper is assumed to be connected and complete. Assume M has a codimension q

foliation which is denoted by T. Then this foliation may be defined by a maximal

family of C°° submersions,/,: Ua -^fa(Ua) c Rq, where { i/a}aeA is an open cover

of M and where for each p G Ua n Uß, there is some local C °° diffeomorphism,

d>^a, of Rq so that/g = <í>£, ° /„ in some neighborhood Upofp. Up may be chosen so

it is in Ua n Uß. In fact, if p' G Ua n Uß, </>£, = #£ on fa(Up n Up.) and *£, =

<bßy ° <j>Pa whenever this equation makes sense (see Lawson [8, pp. 2-3]). Observe

that a tangent vector Vp belongs to the tangent space of the leaf through p, CV^, if

and only if /„. V - 0 or V G ker /
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Now fix a Riemannian metric < , > on M. Then the metric < , > determines a

distribution orthogonal to T which we denote by %. If E and F are arbitrary

tangent vectors on M, TE and %E are the projections onto the distributions CV

and %, respectively. If °VE = E, E is called vertical; if %F = F, F is called

horizontal.

Now let us restrict ourselves to Ua and consider the submersions/,: Ua-*Rq

which define the foliation T. We say a horizontal vector field X on (/ is /, Aasi'c

provided /„A^, = faXp, for every p and p' in a connected component or plaque of

i/„nl where L is any leaf of °V. In [3], we established the following result for

horizontal vector fields. For convenience, we include its proof here.

Proposition 1.1. A horizontal vector field on Ua n Uß is fa basic if and only if it is

f0 basic.

Proof. To prove this result, assume X is fa basic and p and p' both lie in a

plaque of Ua n Uß n L. Using the notation above, if p andp' both he in Up n Up,,

then

0) /^.^ = ^ßaJa.Xp = $ßa.fa.Xp' = fß.Xp'

and so we are done. If p andp' do not he in Up n £/,., we can choose a path in the

plaque of Ua n Uß n L connectingp top' and can select for each x on the path an

open Ux c Ua n í/^ so d>¿ is defined on f(Ux). Since the path is compact, the open

cover {Ux: x G path} has a finite subcover, { Í/ : 1 </<«}. If e is the Lebesgue

number of the subcover, we can choose {pk: 0 < k < m) so that p0 = p, pm = p'

and d(p¡,pi+x) < e, where d is the distance function on L induced from the metric

on T. Then <pg.fa.Xpi = <$¿'/«A+, and so from 0)»

fß.Xp = fß.Xp0 = <¡>f&.fa.Xp0 = Qßi.fa.Xp,
\2) ,

=   •   •   -    ~ <t>ßS.fa.Xp„   = <t>fL.fa.Xp-  = /^.^p-

We conclude X isfß basic on Ua n cTg, since L was an arbitrary leaf. Switching the

indices a and ß we obtain the converse.

2. Let M be foliated as in § 1 and suppose < , > is a Riemannian metric on M.

< , > is called bundle-like with respect to the foliation T if and only if for each a,

/, : Ua -* R9 is a Riemannian submersion [10] onto its image fa( Ua) in Rq or,

equivalently, the metric on % on Ua is projectible onto its image fa(Ua) c Rq.

Notice, if < , > is bundle-like, the local diffeomorphisms, <i>£,, of Rq are isometries

with respect to the projected metrics. In general, the metric projected onto fa(Ua)

does not coincide with the flat metric. In [6] the following result was established.

Theorem 2.1. (a) Let M be a manifold with foliation T and complete Riemannian

metric, < , >, that is bundle-like with respect to the foliation. Let B denote the set of

leaves of T and it: M -^ B be the map: x —> (leaf through x), for x G M. Then, if all

the leaves are closed in M, B can be made into a metric space in such a way that it is

a continuous and open mapping that does not increase distances.

(h) If, further, the holonomy of each leaf with respect to the foliation is only the

identity, then B can be made into a C°° manifold so that it is a C°° map of maximal

rank.
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Remark 2.2. Since B is a metric space, it follows B is Hausdorff. We observe

that in the proof of Theorem 2.1, Hermann establishes that bundle-like foliations

satisfying the hypotheses (a) and (b) above are regular in the sense of Palais [11, p.

13] or simple in the sense of Haefliger [4, p. 372]. One notes that for arbitrary

regular or simple foliations, the leaves are always closed [11, p. 18] and the

holonomy of each leaf with respect to the foliation is trivial [4, p.379].

As a consequence of Theorem 2.1, we will establish the following result.

Theorem 2.2. Let M be a complete connected manifold with bundle-like foliation
<V.

(a) If all the leaves of °V are closed and the holonomy group of each leaf with

respect to the foliation is trivial, then there is a natural Riemannian metric on the leaf

space B so that it: M —> B taking x -» (leaf through x), for x G M is a Riemannian

submersion.

(b) Conversely, with the notation as in (a), if it: M —» B is a Riemannian

submersion, then all the leaves are closed and each leaf has trivial foliation holonomy.

Proof. By Theorem 2.1 (a) and (b), B is a C°° (Hausdorff) manifold and

it: M -* B is a C* map of maximal rank. Let L he any leaf of T. By the implicit

function theorem we can find about eachp G L, a neighborhood Fp of M so that:

(1) Each leaf of T intersects Vp in one and only one plaque or component.

Observe,

(2) Vp g Ua for some a where the Ua are the open sets defined in jl. If Vß were

not in some Ua containing p, take V'p = Vp n Ua and rename V'p, Vp.

From (1), (2) and [4, §1.5, p. 372], we have

(3) If y, z G Vp n L' where L' is any leaf of °T with irmXy = •n1tXz for a

horizontal vector field X on Ua, then we also havefa^Xy = fa,Xz.

By [4, p. 372], tt(Vp) is an open set in B and is diffeomorphic to/„(^) ci'.

Suppose A1 is a horizontal vector field on Vp (i.e. Xz belongs to %z for all z G Vp)

and assume 7r„ X is a well-defined vector field on tt( Vp) c B. We set

def
(4) (tt*Xp, v*xp)<p) = {f«XpJaXp)Upy

Since every tangent vector X*(p) of B at tr(p) can be lifted to a unique horizontal

family defined on Vp f] L, we see that (4) induces an inner product on T^p)B using

the bilinearity of < , >. Evidently, the definition does not depend on the Vp which

satisfies (1) and (2).

In fact, the metric on T^p)B does not depend on a, since

(ft0Xp, *M^ = {fa,Xp,fa.Xp)Â(p)

(5) -{H.Ja.xp,4$*Ja.x,)

= \fß.xp> fß.xp)f/¿p)>

whenever p G Uß.
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If q G L n Vp, then ■nifXq = "nnXp = X^p), since L C\ Vp has only one plaque in

Vp. The above Vp can be Vq and we have 7r(p) = ir(q) and, by (3),

<»,*,, V*Xt)<q) -   (fa.Xç>fa.Xq)fM_Up)

=  (faXp,fa.Xp)fjp) = (»•^:«r^>^)-

Suppose q G L but ?í ^. Then there is a path y in L connecting p to ç. For

each x G y, there is an open set Vx satisfying (1) and (2) so that Vx c Ua(xY

Consider the cover { Vx) of the segment y and let e be the Lebesgue number of the

cover. Select a sequence {p,}o</<m so that p0= p, pm = q and p, G y and

d(pj,pi+x) < e, where d is the distance metric on L induced from the Riemannian

metric < , ). Note, p„ p,+1 belong to some Vx (and hence to some C/a(Jt)). To

simplify notation we denote the Vx to which p„ p,+ , belong by V¡; Ua^x) will be

denoted by U¡. Thus, p,+„ pi+2 belong to Vi+X and to Ui+X, etc. The associated

submersions from fJj -» Rq which define the foliation will be denoted by/. We will

denote Xp¡ by X¡, where Xp = X0, Xq = Xm and wmX¡ = A^ for all i. Then

7r(p) = tr(q) and

("*Xp> 7r*Xp\ip) = (fo*XpJo*Xp)fdip)

byJ6) .
= \fo*Xo,fo*X°'MPo)   =   \fo*Xx'fo*Xx/MPo)-f¿PU

^7' °y (5) / \      by (6) / v

=     {f^Xvf^Xl)Mpi)    =    {fuX2>fl*X2)f¡(pt)_fí
(P2>

-   {f2*X2,f2*X2)MP2) - • • • - ('V*',, ■n-»A'ç>j
t(9)

We conclude that the metric induced on T^p)B is independent of the point in

L = 7T~x(tt(p)) and so the metric on the horizontal distribution % induces a metric

on TB. Since everything is evidently C00 and since ¿>£, = </>£, forp andp' close, as

was mentioned in §1, the projected metric is a C°° metric on B. This proves part (a)

of Theorem 2.2.

The proof of part (b) of Theorem 2.2 runs as follows: Since w: M—* B is a

Riemannian submersion the foliation is regular in the sense of Palais [11]. By [4, p.

379], the holonomy of each leaf is trivial.

Remark 2.3. Finer results can be obtained when T is a Riemannian homoge-

neous foliation [1].

As an application of Theorem 2.2 we have the following result of Reinhart [12].

For simplicity we assume M is connected and complete throughout the rest of this

section.

Corollary 2.4. Suppose the bundle-like foliation on M is regular. Then, it:

M -+ B is a fiber space.

Proof. Since the foliation is regular, all the leaves are closed [11, p. 18] and the

holonomy of each leaf is trivial. Hence, m: M —* B is a Riemannian submersion by

Theorem 2.2. That it is a fiber space follows from a result of Hermann [6] or

Nagano [9].
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Corollary 2.5. Suppose the bundle-like foliation on M is regular and the leaves

are totally geodesic. Then, it: M —» B is a fiber bundle with structure group the Lie

group of isometries of the fiber.

Proof. By Theorem 2.2, m: M -> B is a Riemannian submersion whose fibers are

totally geodesic. By another result of [6, 9], it: A/-» B is a fiber bundle with the

indicated structure group.

Remark 2.6. By a remark of Reinhart [12, pp. 121-122], any fiber space can be

made into a Riemannian submersion. Conversely, the above cited result of Nagano

and Hermann imply that any Riemannian submersion is a fiber space. Thus, in the

C °° case, Riemannian submersions and fiber spaces are equivalent. What Theorem

2.2 adds is that the metric on the leaf space is naturally compatible with the

bundle-like metric.

References

1. R. Blumenthal, Riemannian homogeneous foliations without holonomy (preprint).

2. C. Ehresmann, Les connexions infinitesmals, Colloq. Topologie (Espaces Fibres), Bruxelles, 1950,

pp. 29-95.
3. Richard H. Escóbales, Jr., The integrability tensor for bundle-like foliations, Trans. Amer. Math.

Soc. (to appear).

4. A. Haefliger, Variétés feuilletées, Ann. Scuola Norm Sup. Pisa (3) 16 (1962), 367-379.

5. R. Hermann, A sufficient condition that a map of Riemannian manifolds be a fiber bundle, Proc.

Amer. Math. Soc. 11 (1960), 236-242.

6._, On the differential geometry of foliations, Ann. of Math. (2) 72 (1960), 445-457.

7. H. Blaine Lawson, Jr., Foliations, Bull. Amer. Math. Soc. 80 (1974), 369-418.
8._, The quantitative theory of foliations, CBMS Reg. Conf. Ser. in Math., vol. 27, Amer. Math.

Soc. Providence, R. I., 1977.

9. T. Nagano, On fibred Riemann manifolds, Sei. Papers College Gen. Ed. Univ. Tokyo 10 (1960),

17-27.

10. B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.

11. R. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc.

No. 22 (1957).
12. B. L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. (2) 69 (1959), 119-131.

Department of Mathematics, Canisius College, Buffalo, New York 14208


