GENERATORS OF $H^*(MSO; Z_2)$ AS A MODULE OVER THE STEENROD ALGEBRA, AND THE ORIENTED COBORDISM RING

STAVROS PAPASTAVRIDIS

ABSTRACT. In this paper we will describe a minimal set of A-generators of $H^*(MSO; \mathbb{Z}_2)$ (where A is the mod-2 Steenrod Algebra). The description is very much analogous to R. Thom's description of generators for $H^*(MO; \mathbb{Z}_2)$ (see [7]). As a corollary, we give simple cohomological criteria for a manifold to be indecomposable in the oriented cobordism. Our proof relies on work of D. J. Pengelley (see [5]).

0. Statement of results. In order to describe our results, we need some terminology.

All homology and cohomology groups of this paper will have Z_2 coefficients. Ω will be the oriented cobordism ring.

The cohomology of BO will be identified, in the well-known way, with the subalgebra of $Z_2[t_1, t_2, \ldots, t_N]$, which consists of all symmetric polynomials (each time the index N will be big enough for our purposes).

1. DEFINITION. We will call a partition a finite sequence of positive integers $\omega = (a_1, a_2, \dots, a_k)$, so that $a_1 \le a_2 \le \dots \le a_k$. We will call the degree of ω the integer $|\omega| = a_1 + a_2 + \dots + a_k$. We call the length of ω the number of terms which appear in ω , i.e. $l(\omega) = k$.

If ω is a partition, then $s(\omega)$ is the well-known element of $H^{|\omega|}(BO)$, i.e.

$$s(\omega) = \sum t_{i_1}^{a_1} t_{i_2}^{a_2} \cdot \cdot \cdot t_{i_k}^{a_k}.$$

It is well known that the $s(\omega)$'s form a Z_2 -basis for $H^*(BO)$, and the elements of the form $s(\omega) \cdot U$ (where $U \in H^0(MO)$ is the Thom class) constitute a Z_2 -basis for $H^*(MO)$ (see [2]).

If M is any closed, compact and C^{∞} manifold, then $s(\omega)(M) \in \mathbb{Z}_2$ is the corresponding normal characteristic number of M.

Let $I: MSO \rightarrow MO$ be the obvious map.

- 2. DEFINITION. We define P to be the set of all partitions ω which satisfy all the following conditions.
 - (a) No number of the form $(2^i 1)$, where $i \ge 1$, is included in ω .

Received by the editors December 15, 1980 and, in revised form, April 13, 1981. 1980 Mathematics Subject Classification. Primary 55R40, 57R75; Secondary 55S10, 57R20. Key words and phrases. Oriented cobordism, cohomology of MSO.

¹The original proof was lengthier and elementary. After the original version of the paper was written, I was informed of Pengelley's unpublished work, which could be used to shorten the argument.

(b) A number of the form 2^i , where i > 1, appears always an even number of times in the partition ω . (*Remark*. The number zero is even.)

We define P_1 to be the subset of P which consists of all partitions of the form $(2a_1, 2a_1, 2a_2, 2a_2, \ldots, 2a_k, 2a_k)$ where $0 < a_1 \le a_2 \le \cdots \le a_k$.

We define P_2 to be the subset of $(P - P_1)$ which consists of all partitions of the form (a_1, a_2, \ldots, a_k) or of the form $(a_1, a_2, \ldots, a_k, 2b_1, 2b_1, \ldots, 2b_m, 2b_m)$, where a_k is an odd number.

Our main result is the following

3. THEOREM. The set of elements $\{I^*(s(\omega) \cdot U): \omega \in P_1 \cup P_2\}$ is a minimal set of generators for the A-module $H^*(MSO)$. The only relations are

$$\operatorname{Sq}^{1}(I^{*}(s(\omega)\cdot U))=0$$
, where $\omega\in P_{1}$.

4. DEFINITION. Let P_3 be the set of all partitions (2a, 2a), where a > 0. Let P_4 be the subset of P_2 which consists of all partitions of the form (a_1, a_2, \ldots, a_k) where a_k is an odd number and the $a_1, a_2, \ldots, a_{k-1}$'s are unequal even numbers.

The following two theorems are corollaries of Theorem 3.

5. THEOREM. Let M be an oriented manifold whose oriented cobordism class belongs to the torsion part of Ω . The manifold M is indecomposable in Ω if and only if there is a partition $\omega \in P_4$ so that $s(\omega)(M) \neq 0$.

The corresponding condition for the free part of Ω is well known (see [8, p. 293]).

6. THEOREM. Let $\{M_{4k}: k \ge 1\}$ be a collection of oriented manifolds which form a minimal set of generators of the free part of Ω . Let $\{M_{\omega}: \omega \in P_4\}$ be a collection of oriented manifolds so that dim $M_{\omega} = |\omega|$. Then, the collection of manifolds

$$\{M_{4k},M_{\omega}:k\geqslant 1,\omega\in P_{4}\},$$

is a minimal set of generators for Ω if and only if the matrix $||s(\omega')(M_{\omega})||$, where $\omega, \omega' \in P_4$, is invertible.

1. The A_* -comodule structure of $H_*(MSO)$. The main result of this section is Theorem 12, which is a corollary of D. Pengelley's work (see Theorem 8) and provides certain information concerning the A_* -comodule structure of $H_*(MSO)$. (Remark. A_* is the dual of the mod-2 Steenrod Algebra.)

Let $\{x(\omega): \omega \text{ is a partition}\}\$ be the basis of $H_*(MO)$, which is dual to the basis $\{s(\omega) \cdot U: \omega \text{ is a partition}\}\$ of $H^*(MO)$, and let $x(\omega)$ be the dual of $s(\omega) \cdot U$.

The following theorem is well known.

7. THEOREM. Let $x_i = x((i))$, where i > 0, and let $\omega = (a_1, a_2, \dots, a_k)$ be a partition. Then $H_{\star}(MO)$ is a polynomial algebra so that

$$H_*(MO) = Z_2[x_1, x_2, \ldots, x_n, \ldots].$$

Furthermore, we have $x(\omega) = x_{a_1} x_{a_2} \cdots x_{a_k}$.

Proof. See, for example, [1].

Let $\bar{\xi}_i \in A_{*(2^i-1)}$ be the Hopf Algebra conjugate of Milnor's generators $\xi_i \in A_{*(2^i-1)}$.

8. THEOREM (D. J. PENGELLEY). There is a sequence of elements $y_n \in H_n(MO)$, where $n \ge 2$, so that

$$I_*(H_*(MSO)) = Z_2[y_2, y_3, \ldots, y_n, \ldots].$$

If $n \neq 2^i$, then y_n is indecomposable in $H_*(MO)$. If $n = 2^i$, where i > 1, then there is an indecomposable element $z_{n/2} \in H_{n/2}(MO)$, so that $y_n = (z_{n/2})^2$. Furthermore, if $\mu_*: H_*(MO) \to A_* \otimes H_*(MO)$ is the obvious coaction map, then we have

(a)
$$\mu_{*}(y_{n}) = \begin{cases} \bar{\xi}_{1}^{2} \otimes 1 + 1 \otimes y_{2}, & \text{if } n = 2, \\ 1 \otimes (z_{n/2})^{2}, & \text{if } n = 2^{i} \text{ and } i \geq 2, \\ \sum_{j=0}^{i} \bar{\xi}_{j} \otimes y_{2^{j-j}-1}^{2^{j}}, & \text{if } n = 2^{i} - 1 \text{ and } i \geq 2, \\ 1 \otimes y_{n} + \bar{\xi}_{1} \otimes y_{n-1}, & \text{if } n = 2k \text{ and } k \neq 2^{i}, \\ 1 \otimes y_{n}, & \text{otherwise.} \end{cases}$$

Proof. See [5].

- 9. DEFINITION. Let ω_1 , ω_2 be two partitions. We say that ω_1 is bigger than ω_2 if and only if at least one of the following two conditions is satisfied:
 - (a) $l(\omega_1) > l(\omega_2)$.
 - (b) $l(\omega_1) = l(\omega_2)$ and $|\omega_1| < |\omega_2|$.

This relation of "bigger" is clearly transitive but it is not a total ordering.

10. DEFINITION. Let $\omega_1, \omega_2, \ldots, \omega_k$ be k distinct partitions and let ω be another partition. Let a, a_1, \ldots, a_k be nonzero elements of A_* . We say that the element

$$a_1 \otimes x(\omega_1) + a_2 \otimes x(\omega_2) + \cdots + a_k \otimes x(\omega_k)$$

of $A_* \otimes H_*(MO)$ is bigger than $a \otimes x(\omega)$ if and only if all the partitions $\omega_1, \omega_2, \ldots, \omega_k$ are bigger than ω .

11. DEFINITION. Let $x, y \in A_* \otimes H_*(MO)$. We define the symbol x < y to mean that the element (x - y) is bigger than x, or that (x - y) = 0.

REMARK. We caution the reader about the fact that the relation \prec is *not* defined for arbitrary elements of $A_{\star} \otimes H_{\star}(MO)$.

Our next result is a corollary of Theorem 8.

- 12. THEOREM. We have
- (a) $\bar{\xi}_1^2 \otimes 1 < \mu_*(y_2)$.
- (b) If $n = 2^i$ and i > 2, then

$$1 \otimes x_{(n/2)}^2 < \mu_*(y_n).$$

(c) If $n = 2^i - 1$ and $i \ge 2$, then

$$ar{\xi}_i \otimes 1 < \mu_*(y_n).$$

(d) If $n \neq 2^i, 2^i - 1$, for i > 0, then

$$i \otimes x_n \prec \mu_{\star}(y_n).$$

- 2. The Steenrod Algebra. In this section we will describe two well-known lemmas about the Steenrod Algebra, which will be used in the sequel.
- 13. LEMMA. Let B be the subspace of A generated by the elements $Sq^{i_1}Sq^{i_2}...Sq^{i_k}$ where $i_{t-1} \ge 2i_t$, $k \ge t \ge 2$ and $i_k \ge 2$. Then A is the direct sum of the subspaces B and $B \cdot Sq^1$. Furthermore $A \cdot Sq^1 = B \cdot Sq^1$.

Proof. See [4, p. 7-8].

14. Lemma. The subspace of A_* which is the annihilator of $A \cdot \operatorname{Sq}^1$ is the polynomial subalgebra of A_* generated by $\bar{\xi}_1^2$, $\bar{\xi}_i$ for $i \ge 2$.

PROOF. Let Sq^R , where $R = (r_1, r_2, ...)$, be the well-known element of the Milnor s basis of A (see [3]). Milnor proves that

$$Sq^{1}Sq^{R} = (r_{1} + 1)Sq^{r_{1}+1,r_{2},...}$$

This implies that the elements $\bar{\xi}_1^2$, $\bar{\xi}_i$ for $i \ge 2$, belong to the annihilator of A Sq¹. The rest of the proof follows from the dimensions of the Z_2 -spaces B, $B \cdot \text{Sq}^1$, $Z_2[\bar{\xi}_1^2, \bar{\xi}_2, \bar{\xi}_3, \dots]$.

- 3. Proof of Theorem 3. In this section we will prove Theorem 3, but first we need some preparation.
- 15. DEFINITION. Let X be a subset of a vector space. Then $\langle X \rangle$ is the subspace spanned by X.

Let C be a set of partitions. Then we define $s(C) = \{s(\omega) : \omega \in C\}$.

Let $\omega = (a_1, a_2, \dots, a_k)$ be a partition. Then we define $y(\omega) = y_{a_1} y_{a_2} \cdots y_{a_k}$.

16. Proposition. The restriction of the map $I^*\mu$,

$$I^*\mu: B \otimes \langle s(P) \cdot U \rangle \rightarrow H^*(MSO)$$

is an isomorphism.

(*Remark*. For the definition of B, see Lemma 13. For the definition of P, see Definition 2.)

PROOF. First we observe that the graded spaces $B \otimes \langle s(P) \cdot U \rangle$ and $H^*(MSO)$ have the same \mathbb{Z}_2 -dimensions in each degree. This follows easily from the definition of B, P and the cohomology of MSO.

So it is enough to prove that the restriction of the map $I^*\mu$ is a monomorphism. We argue by contradiction. Let us assume that there are k distinct partitions $\omega_1, \omega_2, \ldots, \omega_k$ of P and nonzero elements of B, a_1, a_2, \ldots, a_k , so that

$$I^*\mu(a_1\otimes s(\omega_1)U+a_2\otimes s(\omega_2)U+\cdots+a_k\otimes s(\omega_k)U)=0.$$

Among the partitions $\omega_1, \omega_2, \ldots, \omega_k$, there is at least one which is maximal in the relation bigger. Let us suppose that ω_1 is such a maximal partition. Let ω be the partition that we get by substituting in ω_1 every occurrence of $(\ldots, 2^i, 2^i, \ldots)$ by $(\ldots, 2^{i+1}, \ldots)$. Then, by Theorem 12, we have $1 \otimes x(\omega_1) < \mu_*(y(\omega))$. Besides, there is an element b belonging to the annihilator of $A \cdot \operatorname{Sq}^1 = B \cdot \operatorname{Sq}^1$, so that $\langle a_1, b \rangle = 1$. Furthermore, by Lemma 14, the element b can be chosen to be a

product of $\bar{\xi}_1^2$, $\bar{\xi}_i$'s where $i \ge 2$. So, by Theorem 12, there is a partition ω' , consisting entirely of 2, $(2^i - 1)$'s where $i \ge 2$, so that

$$b \otimes 1 \prec \mu_*(y(\omega')).$$

Finally, by Theorem 8, there is an element $z \in H_*(MSO)$ so that $I_*(z) = y(\omega') \cdot y(\omega)$.

Combining all the above we get $I_*(z) = y(\omega')y(\omega_1)$. Combining the above, we have

$$\langle I^* \mu(a_1 \otimes s(\omega_1) \cdot U + \cdots + a_k \otimes s(\omega_k) \cdot U), z \rangle$$

$$= \langle a_1 \otimes s(\omega) \cdot U + \cdots + a_k \otimes s(\omega_k) \cdot U, \mu_* I_*(z) \rangle$$

$$= \langle a_1 \otimes s(\omega_1) \cdot U + \cdots + a_k \otimes s(\omega_k) \cdot U, \mu_* (y(\omega')y(\omega)) \rangle$$

$$= \langle a_1 \otimes s(\omega_1) \cdot U + \cdots + a_k \otimes s(\omega_k) \cdot U, b \otimes x(\omega_1) \rangle$$

$$= \langle a_1 \otimes s(\omega_1) \cdot U, b \otimes x(\omega_1) \rangle = 1 \neq 0$$

which contradicts our assumption.

17. LEMMA. Let $\omega \in (P - (P_1 \cup P_2))$ be a partition. Then there is a partition $\omega_0 \in P_2$ so that $s(\omega) - \operatorname{Sq}^1 s(\omega_0) = \sum_i s(\omega_i)$ where the ω_i 's belong to P_2 .

PROOF. Let $\omega=(a_1,\ldots,a_m,2b_1,2b_1,\ldots,2b_k,2b_k)$ where a_m is an even positive integer and $a_{m-1}< a_m$. Then we define $\omega_0=(a_1,\ldots,a_{m-1},a_m-1,2b_1,2b_1,\ldots,2b_k,2b_k)$. Clearly $\omega_0\in P_2$. The assertion of the lemma follows easily.

18. Proposition. Let R be the subalgebra of A generated by the element Sq^1 . Then the Z_2 -space $I^*(\langle s(P-P_1) \cdot U \rangle)$ is a free R-module and the set $I^*(s(P_2) \cdot U)$ is a free basis.

PROOF. The previous lemma says that the set $I^*(s(P_2) \cdot U)$ is a set of R-generators for the R-module $I^*(\langle s(P-P_1) \cdot U \rangle)$. (Remark. Note that $\operatorname{Sq}^1 I^*(s(\omega) \cdot U) = I^*(\operatorname{Sq}^1(s(\omega)) \cdot U)$). Next, it is not difficult to observe that the number of partitions of $(P-P_1 \cup P_2)$ of degree m equals the number of partitions of P_2 of degree (m-1). This implies that the set of elements $\{s(\omega) \cdot U, \operatorname{Sq}^1(s(\omega) \cdot U)\}$ for $\omega \in P_2$ is Z_2 -independent. That ends the proof.

PROOF OF THEOREM 3. It follows easily from the results of this section.

- 4. Proof of Theorems 5 and 6. In this final section, we will complete the proofs of Theorems 5 and 6, but first we will need some preparation.
- 19. Lemma. Let ω be a partition consisting entirely of even numbers, so that at least one of them appears an odd number of times in ω . If M is an orientable manifold, then

$$s(\omega)(M)=0.$$

PROOF. Let $\omega = (a_1, a_2, \dots, a_m, \dots, a_k)$, so that $a_{m-1} < a_m$ and the number a_m appears in ω an odd number of times. Let $\omega_0 = (a_1, a_2, \dots, a_m - 1, \dots, a_k)$.

Clearly

$$Sq^{1}(I^{*}(s(\omega_{0})\cdot U))=I^{*}(s(\omega)\cdot U).$$

Now the proof follows without charge.

20. COROLLARY. Let $\omega \in P_3 \cup P_4$ and let M be an oriented manifold which is decomposable in Ω . Then

$$s(\omega)(M)=0.$$

- 21. DEFINITION. Let $\omega \in P_1 \cup P_2$. Then N_{ω} is defined to be an oriented manifold, so that $s(\omega)(N_{\omega}) \neq 0$ and $s(\omega')(N_{\omega}) = 0$ for all $\omega' \in P_1 \cup P_2$ and $\omega' \neq \omega$. The existence of such manifolds is guaranteed by Theorem 3.
- 22. PROPOSITION. The family of N_{ω} 's, where $\omega \in P_3 \cup P_4$, is a minimal set of algebra generators for $\Omega \otimes Z_2$.

PROOF. By the previous corollary, the cobordism classes of N_{ω} 's are linearly independent in $(\Omega \otimes Z_2)/(\text{decomposable})$. On the other hand, these manifolds are as numerous as Wall's generators of Ω (see [8, p. 309]). So, they must generate $\Omega \otimes Z_2$.

23. COROLLARY. Let $\omega \in P_3$. Then the manifold N_{ω} of Definition 21 can be chosen to be a polynomial generator of the torsion free part of Ω .

Now the proof of Theorems 5 and 6 follows without difficulty from Proposition 22 and Corollary 23.

BIBLIOGRAPHY

- 1. A. Liulevicius, A proof of Thom's theorem, Comment. Math. Helv. 37 (1962-63), 121-131.
- 2. _____, Homology comodules, Trans. Amer. Math. Soc. 134 (1968), 375-382.
- 3. J. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171.
- 4. N. Steenrod and D. B. A. Epstein, *Cohomology operations*, Ann. of Math. Studies, no. 50, Princeton Univ. Press, Princeton, N. J., 1962.
- 5. D. J. Pengelley, The homology of MSO and MSU as A* comodule algebras, and the cobordism ring (to appear).
 - 6. R. Stong, Notes on cobordism theory, Princeton Univ. Press, Princeton, N. J., 1968.
- 7. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86
 - 8. C. T. C. Wall, Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292-311.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PATRAS, PATRAS, GREECE