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GENERATORS OF H*(MSO; Z2) AS A MODULE

OVER THE STEENROD ALGEBRA,

AND THE ORIENTED COBORDISM RING

STAVROS PAPASTAVRIDIS

Abstract. In this paper we will describe a minimal set of ^-generators of

H*(MSO; Z2) (where A is the mod-2 Steenrod Algebra). The description is very

much analogous to R. Thorn's description of generators for H*(MO; Z£ (see [7]).

As a corollary, we give simple cohomological criteria for a manifold to be

indecomposable in the oriented cobordism. Our proof relies on work of D. J.

Pengelley (see [5]).'

0. Statement of results. In order to describe our results, we need some terminol-

ogy.

All homology and cohomology groups of this paper will have Z2 coefficients, fi

will be the oriented cobordism ring.

The cohomology of BO will be identified, in the well-known way, with the

subalgebra of Z2[tx, t2, . . . , tN], which consists of all symmetric polynomials (each

time the index N will be big enough for our purposes).

1. Definition. We will call a partition a finite sequence of positive integers

co = (ax, a2, . . ., ak), so that ax < a2 < ■ ■ ■ < ak. We will call the degree of co the

integer |co| = ax + a2 + • ■ ■ +ak. We call the length of co the number of terms

which appear in co, i.e. /(co) = k.

If co is a partition, then s(o>) is the well-known element of H^(BO), i.e.

s(u) = 'Zt^t,"2 ■ ■ ■ t,\

It is well known that the s(u)'s form a Z2-basis for H*(BO), and the elements of

the form s(as) • U (where U G H°(MO) is the Thom class) constitute a Z2-basis for

H*(MO) (see [2]).

If M is any closed, compact and C°° manifold, then s(co)(M) G Z2 is the

corresponding normal characteristic number of M.

Let /: MSO —> MO he the obvious map.

2. Definition. We define P to be the set of all partitions co which satisfy all the

following conditions.

(a) No number of the form (2' — 1), where i > 1, is included in co.
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(b) A number of the form 2', where i > 1, appears always an even number of

times in the partition co. (Remark. The number zero is even.)

We define Px to be the subset of P which consists of all partitions of the form

(2a,, 2a„ 2a2, 2a2, . . ., 2ak, 2ak) where 0 < a, < a2 < • • •  < ak.

We define P2 to be the subset of (P — Px) which consists of all partitions of the

form (ax, a2, . . ., ak) or of the form (ax, a2, . . . , ak, 26,, 2bx, . . . , 2bm, 2bm),

where ak is an odd number.

Our main result is the following

3. Theorem. The set of elements {I*(s(a>) • U): co G Px u P2) is a minimal set of

generators for the A-module H*(MSO). The only relations are

Sqx(I*(s(u>y- U)) = 0,    where co G Px.

4. Definition. Let P3 he the set of all partitions (2a, 2a), where a > 0. Let P4 he

the subset of P2 which consists of all partitions of the form (ax, a2, . . . , ak) where

ak is an odd number and the ax, a2, . . . ,ak_xs are unequal even numbers.

The following two theorems are corollaries of Theorem 3.

5. Theorem. Let M be an oriented manifold whose oriented cobordism class belongs

to the torsion part of ñ. The manifold M is indecomposable in fi if and only if there is

a partition co G P4 so that s(to)(M) ¥= 0.

The corresponding condition for the free part of ñ is well known (see [8, p. 293]).

6. Theorem. Let {M4k: k > I) be a collection of oriented manifolds which form a

minimal set of generators of the free part o/B. Let [Ma: co G PA} be a collection of

oriented manifolds so that dim Mu = |co|. Then, the collection of manifolds

{M4k,Ma:k > l,coG P4),

is a minimal set of generators for £2 if and only if the matrix \\s(u')(MJ)\\, where

to, to' G P4, is invertible.

1. The /1,,-comodule structure of Ht(MSO). The main result of this section is

Theorem 12, which is a corollary of D. Pengelley's work (see Theorem 8) and

provides certain information concerning the /l+-comodule structure of H ¿(MSO).

(Remark. A ¡is the dual of the mod-2 Steenrod Algebra.)

Let {x(co): to is a partition) be the basis of H ¿(MO), which is dual to the basis

(s(co) • U: co is a partition} of H*(MO), and let x(tú) he the dual of s(u) ■ U.

The following theorem is well known.

7. Theorem. Let x, = x((i')), where i > 0, and let co = (a„ a2, . . ., ak) be a

partition. Then Ht(MO) is a polynomial algebra so that

H¿yMO) = Z2[xx,x2,...,x„,...].

Furthermore, we have x(to) = xaxai ■ • • x^.

Proof. See, for example, [1].

Let ^ G Ajf,2i_X) he the Hopf Algebra conjugate of Milnor's generators £, G
a

^♦(Z-l)-



GENERATORS OF H*(MSO; Z2) 287

8. Theorem (D. J. Pengelley). There is a sequence of elements y„ G Hn(MO),

where n>2,so that

I,{H,(MSO)) = Z2[y2,y3,...,yn,...j.

If n ¥= 2', then yn is indecomposable in H ¿(MO). If n =2', where i > I, then there is

an indecomposable element zn/2 G Hn/2(MO), so that yn = (z„/2)2. Furthermore, if

p¿. H¿yMO) -> Am ® H^(MO) is the obvious coaction map, then we have

(a) P*(yn) =

I2 ® 1 + 1 ® y2, ifn = 2,

1 ® (zn/2f, ifn = 2' and i > 2,

2}-o| ® y*-'-» i/« = 2' - 1 and i > 2,

1 ®yn -f-!, ® v„_„ ifn = 2kandk=£2',

1 ®_Kn, otherwise.

Proof. See [5].

9. Definition. Let co,, co2 be two partitions. We say that co, is bigger than u2 if

and only if at least one of the following two conditions is satisfied:

(a) /(co,) > /(co,).

(b) /(co,) = /(W2) and |co,| < |to2|.

This relation of "bigger" is clearly transitive but it is not a total ordering.

10. Definition. Let to,, co2, . . ., uk be k distinct partitions and let co be another

partition. Let a, ax, . . . , ak he nonzero elements of A^. We say that the element

a, ® x(ux) + a2 ® x(co2) + • • • + ak ® x(co^)

of An ® H¿yMO)  is bigger  than  a ® x(co)  if and  only  if all  the partitions

co„ co2,..., uk are bigger than u.

11. Definition. Let x,y G A+® Ht(MO). We define the symbol x < y to

mean that the element (x — v) is bigger than x, or that (x — v) = 0.

Remark. We caution the reader about the fact that the relation -< is not defined

for arbitrary elements of At ® H^(MO).

Our next result is a corollary of Theorem 8.

12. Theorem. We have

(a)\2®l< u.,0^.

(b)Ifn = 2 and i > 2, then

i ® x\n/2) < p*(yn)

(c) If n = 2' — 1 and i > 2, then

| ® 1 < p.(yn).

(d) Ifn^ 2', 2' - IJori > 0, then

i®xn< p,(y„).

¿ (x) 1 -< u.(v,l
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2. The Steenrod Algebra. In this section we will describe two well-known lemmas

about the Steenrod Algebra, which will be used in the sequel.

13. Lemma. Let B be the subspace of A generated by the elements Sq''Sq'2. . . Sq'*

where /,_, > 2i„ k > t > 2 and ik > 2. Then A is the direct sum of the subspaces B

and B ■ Sq1. Furthermore A • Sq1 = B • Sq1.

Proof. See [4, p. 7-8].

14. Lemma. The subspace of A^ which is the annihilator of A ■ Sq1 is the polynomial

subalgebra of A^ generated by \2, |, for i > 2.

Proof. Let SqÄ, where R = (rx, r2, . . . ), he the well-known element of the

Milnor s basis of A (see [3]). Milnor proves that

Sq1SqÄ = (r, + tpp***""'-

This implies that the elements |,2, £, for i > 2, belong to the annihilator of A Sq1.

The rest of the proof follows from the dimensions of the Z2-spaces B, B • Sq1,

Z2[ç,, ç2, ç3, . . . J.

3. Proof of Theorem 3. In this section we will prove Theorem 3, but first we need

some preparation.

15. Definition. Let Ibea subset of a vector space. Then <Ar> is the subspace

spanned by X.

Let C be a set of partitions. Then we define s(C) = {s(w): to G C}.

Let to = (ax, a2, . . ., ak) be a partition. Then we define/(to) = ya ya • • • y  .

16. Proposition. The restriction of the map I*p,

I*p: B ® (s(P) ■ U) -» H*(MSO)

is an isomorphism.

(Remark. For the definition of B, see Lemma 13. For the definition of P, see

Definition 2.)

Proof. First we observe that the graded spaces B ® (s(P) • U} and H*(MSO)

have the same Z2-dimensions in each degree. This follows easily from the definition

of B, P and the cohomology of MSO.

So it is enough to prove that the restriction of the map I*p is a monomorphism.

We argue by contradiction. Let us assume that there are k distinct partitions

ux, u2, . . . , uk of P and nonzero elements of B, ax, a2, . . ., ak, so that

I*p(ax ® s(ux)U + a2 ® j(to2)t7 + • • • +ak ® s(uk)U) = 0.

Among the partitions co,, to2, . . . , co¿, there is at least one which is maximal in the

relation bigger. Let us suppose that to, is such a maximal partition. Let co be the

partition that we get by substituting in co, every occurrence of (. . . ,2', 2', . . . ) by

( . . ., 2,+1, . . . ). Then, by Theorem 12, we have 1 ® x(ux) -< p¿(y(u>)). Besides,

there is an element b belonging to the annihilator of A ■ Sq1 = B ■ Sq1, so that

<a,, b} = 1. Furthermore, by Lemma 14, the element b can be chosen to be a
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product of I2,1's where i > 2. So, by Theorem 12, there is a partition u', consisting

entirely of 2, (2' — l)'s where i > 2, so that

b ® 1 < p¿(y(o>')).

Finally,  by Theorem 8,  there is an element z G H ¿(MSO) so that I¿(z) =

y(u') • v(to).

Combining all the above we get I,(z) = v(to')v(co,). Combining the above, we

have

(I*p(ax ® i(co,) • U + ■ ■ ■ +ak® s(uk) ■ U), z)

= (a, ® *(co) • U + ■ ■ ■ +ak ® s(tck) ■ U, p.Im(z))

= (a, ® s(ux) ■ U + ■ ■ ■ +ak® s(uk) ■ U, u,( v(co'Mto)))

= <a, ® s(ux) •[/+••• +ak ® s(uk) -U,b® x(to,)>

= <a, ® s(ux) -U,b® x(ux)) = 1 ^= 0

which contradicts our assumption.

17. Lemma. Let u G (P — (Px u P2)) be a partition. Then there is a partition

w0 G P2 so that s(u) — Sq^icoo) = S,j(co,) where the co,'j belong to P2.

Proof. Let co = (ax, . . ., am, 2bx, 2bx, . . ., 2bk, 2bk) where am is an even posi-

tive integer and am_x < am. Then we define co0 = (a,, . . . , am_x, am —

1, 2bx, 2bx, . . . , 2bk, 2bk). Clearly co0 G P2. The assertion of the lemma follows

easily.

18. Proposition. Let R be the subalgebra of A generated by the element Sq1. Then

the Z2-space I*((s(P - Px) ■ t/>) is a free R-module and the set 7*(.s(.P2) ■ U) is a

free basis.

Proof. The previous lemma says that the set I*(s(P2) ■ U) is a set of Ä-genera-

tors for the Ä-module I*((s(P - Px) ■ [/». (Remark. Note that Sq1/*(i(co) • U) =

I*(Sqx(s(u)) ■ U)). Next, it is not difficult to observe that the number of partitions

of (P — Px u P2) °f degree m equals the number of partitions of P2 of degree

(m — 1). This implies that the set of elements {j(co) • U, Sq^^to) • U)} for to G P2

is Z2-independent. That ends the proof.

Proof of Theorem 3. It follows easily from the results of this section.

4. Proof of Theorems 5 and 6. In this final section, we will complete the proofs of

Theorems 5 and 6, but first we will need some preparation.

19. Lemma. Let u be a partition consisting entirely of even numbers, so that at least

one of them appears an odd number of times in co. If M is an orientable manifold, then

s(u)(M) = 0.

Proof. Let co = (a,, a2, . . . , am, . . . , ak), so that am_x < am and the number am

appears in to an odd number of times. Let co0 = (ax, a2, . .., am — 1, . . . , ak).
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Clearly

Sqx(l*(s(cc0) ■ £/)) = I*(s(<o) ■ U).

Now the proof follows without charge.

20. Corollary. Let co G P3 u P4 and let M be an oriented manifold which is

decomposable in B. Then

s(u>)(M) = 0.

21. Definition. Let u G Px u P2. Then Na is defined to be an oriented mani-

fold, so that s(oi)(Na) =£ 0 and s(u')(NJ = 0 for all w' £ ?, u P2 and co' ¥> u. The

existence of such manifolds is guaranteed by Theorem 3.

22. Proposition. The family of Na's, where co G P3 u P4, is a minimal set of

algebra generators for B ® Z2.

Proof. By the previous corollary, the cobordism classes of Nu's are linearly

independent in (B ® Z2)/(decomposable). On the other hand, these manifolds are

as numerous as Wall's generators of B (see [8, p. 309]). So, they must generate

B® Z2.

23. Corollary. Let co G P3. Then the manifold Na of Definition 21 can be chosen

to be a polynomial generator of the torsion free part of B.

Now the proof of Theorems 5 and 6 follows without difficulty from Proposition

22 and Corollary 23.
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