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IS EVERY GO-TOPOLOGY A JOIN

OF TWO ORDERABLE TOPOLOGIES?

PAUL R. MEYER, VICTOR NEUMANN-LARA AND RICHARD G. WILSON1,2

Abstract. As a generalization of GO-topologies (GO = generalized ordered), we

are interested in those topologies (here called JO-topologies) on a set A1 which can

be expressed as a join of orderable topologies (the join being taken in the lattice of

all topologies on X). If a topology t is the join of m orderable topologies we say t is

JO[m]. It is not difficult to prove that every GO-topology is a JO-topology, but the

question (raised in [M 71]) as to whether every GO-topology is JO[2] seems much

more difficult). We show that X is JO{2] if X is a subspace of an orderable space D,

where D is either metrizable and locally separable, or connected with countable

cellularity. (The theorem is actually more general than is stated here.) We give an

example to show that for any positive integer n there is a finite join of order

topologies which is not JO[/i], but these are not GO-topologies.

1. Background and preliminary results. The notion of generalized ordered space

was introduced by Cech in the 1930s (see [C, p. 286]). Since then they have been

studied from various points of view by many authors (see for example

[L 71, F, P 77, P 81]; see Lutzer [L 80] for a recent survey with further references).

Such spaces have also been called suborderable [P 77]; we prefer the latter term as

being more descriptive (GO-spaces are those spaces which can arise as subspaces of

orderable spaces), but it does not seem to be widely used. A study of the properties

of cardinal functions for the class of finite joins of orderable topologies can be

found in [WM].

Let (X, t,<) be a GO-space (notation as in [L 71]); i.e., let (£>,<) be linearly

ordered topological space (LOTS) containing A- as a subspace, with t = relative

topology on X. A point x in X is called a bad point of X if the /-neighborhoods of X

are not the same as the induced order neighborhoods; let B denote the set of all

bad points. We associate with each bad point in X one or two points in D — X

(called missing points), chosen as follows: if p is a bad point from below, thenp is

the A'-sup of {y G X: y <p} andp is not the D-sup of this set; i.e., there is a point

m in D - X such that {y G X: y <p) <m <p. The construction for points

which are bad from above is analogous. For each bad point choose a missing point

below and/or above, and let M denote the set of missing points so chosen.
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Theorem. If (X, t,<) is any subordered space, then t is a join of m order

topologies, where m = max{|M|, 2}.

Proof. We may assume that D = X u M (see [L 71] and [C, p. 286]). In this

case we may use the following notation: each missing point can be written as b+ or

b~ for some b in B. Let t0 denote the < -order topology on X. For each missing

point p we define a topology tp on X.Ifp = b~ define t by reversing the < -order

on { v: y <p). Then t0 V tp eliminates convergence of nets which r0-converge top

from below and agrees with t0 otherwise. If p = b+ modify the above accordingly.

Thus t = t0 V (\/{tp- P G M}). If \M\ > 2 then t0 is not needed.

The following example justifies the assertion in the introduction that finite joins

of orderable topologies are not necessarily JO[2]. The modification needed to do

this for JO[n] will be clear. This method was used in [M71, Example 4] to

construct a JO[2] example which was not a GO-space, in fact not even a chain net

space; the argument used there also shows that the present example is not GO.

Example. A JO[5] topology which is not JO[2].

Let X = (co0 X • ■ ■ Xco4) u {p}, where p = (co0, . . . , co4). For 0 < / < 4, let t¡

he an order topology on A' in which p is the last point and the rest of the ordering is

defined by that lexicographic ordering on IT {to,: 0 < j < 4} in which the ith

coordinate dominates (i.e., (x0, . . . , x4) < (y0, . . ., y4) means x, < v„ or x, = y,

and...). (There is a ^-neighborhood base atp in which each basic neighborhood is a

union of hyperplanes normal to the z'th axis and indexed by a tail of o¡¡. Thus the

r,-ordering within the hyperplanes need not concern us.) Let t = t0 V ■ ■ ■ V*4-

Thus (X, t) is JO[5] by definition. Assume it is JO[2] and get a contradiction as

follows. It is known [WM] that nets directed by 2«-fold products of ordinals suffice

to describe the convergence in any JO[w] topology. Thus there is a net in X — {p}

directed by a 4-fold product of ordinals converging to p. On the other hand the

'-neighborhoods of p are precisely the relative product neighborhoods in X from

H{uj + 1 : 0 < j < 4}. Some to, will not be represented in the 4-fold product, and

the hypothesized net will not be cofinal in the Wj dimension, which is a contradic-

tion.

2. Is every GO-topology JO[2]? It is easy to show that the answer is yes for all

GO-spaces X in which the set of missing points M is discrete in D. It is also known

that the answer is yes for the Sorgenfrey line [M 73]. For the Michael line we can

show that it is JO[3]. These two lines are perhaps the best known examples of

pathological GO-spaces; see [L 71] for background and further properties.

There are of course conditions under which one topology suffices, i.e., the

GO-topology is orderable. If a GO-topology is either compact or connected, then it

is orderable; in fact the given ordering works [L71, 6.1]. If a GO-topology is

scattered (= dispersed) then it is orderable, but in general not under the given

ordering [P 81].

We turn now to our main result, which shows that the answer is yes for a large

class of GO-topologies. Since the precise statement of the theorem requires some

new terminology, we begin by mentioning some specific cases which are easier to

describe.
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Corollary. Let D be a LOTS satisfying any one of the listed conditions and let X

be any subspace of D. Then X is JO[2]; i.e., the topology can be expressed as a join of

two orderable topologies on X.

(i) D has countably many jumps and countable cellularity; more generally, D is a

disjoint topological sum of such spaces.

(ii) D is metrizable and locally separable.

(iii) D has countable weight.

Note that (iii) is a special case of both (ii) and (i).

Example. The product of u copies of a discrete space of power to, is a metrizable

LOTS which is nowhere locally separable. This shows that the second hypothesis in

(ii) does not follow from the rest of the hypotheses. The fact that this space is

orderable follows from [H].

A few more definitions are needed in order to state the theorem. We define an

equivalence relation on a GO-space X: x—y means there is no missing point

between x and v. Let â denote the set of all equivalence classes and 0 denote the

set of those equivalence classes which contain at least two points.

Theorem. Let D be a LOTS and X be any subspace of D. If the set of missing

points M and the set of nontrivial equivalence classes are both countable, then the

relative topology on X is JO[2], i.e., it is the join of two orderable topologies.

Proof of Corollary, (i) follows from the Theorem because each missing point

and its associated bad point determine in D a jump or an interval. By a result of

DeMarco [DM, p. 550] every locally separable metric space is a disjoint topological

sum of second countable spaces, whence (ii).

3. Proof of the main result. (D,<) will denote the LOTS in which X is

embedded; M+ (resp. M~) will denote the set of all elements of M of the form b +

(resp. b~) for some b G B. If S = (a, b) is an open interval in D then we denote the

element a by X(S) and the element b by p(S) (we do not exclude the cases

X(S) = -oo and p(S) = +oo).

Since the sets M and 0 are both countable, we can order them as sequences, say

(mn) and (-nn) respectively. We will define by induction a sequence of open intervals

(T„) and two sequences (£„) and (Fn) of finite subsets of M, where

Fn = [X(Tj):j < n] u {P(Tj):j < n)

and

E„ = ({HTj):j <n)n M+) u ({p(7}):y < n) n M").

The intervals Tn will have the following two properties.

(I) If/ < n and Tnr\Tj^0, then T„ £  7}.

(II) If j < n then Wj c T„ only if X(Tn) = inf w, or p(T„) = sup Wj.

Let E0 and F0 he empty, and let T0 = (-oo, oo). To proceed with the inductive

step, assume that for ally < k, Tj, E,, F¡ have been defined satisfying (I) and (II).

Let ik = min{y: /n, G A/ — Ek_x). Then m¡ is an extreme point of X n (-oo, m¡ )
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or of A' n (m,, +00) but not both. Assume the latter, then there are two cases.

(1) If [m G M: m¡ < m) is empty (i.e., m¡ is the largest missing point of D), we

put Ek = Ek_xu {mik), Fk = Fk_x u {mit} and Tk = (m¡k, +00).

(2) \f {m G M: m¡ < m] is nonempty, then we define W by

W = { m G M: mik <m and | {7T, : y < k and w, c (m¡k, m))\ is minimum possible}.

We note that if m G W then (m¡k, m) does not contain any w, withy < k unless

inf iTj. = m¡k for some/ < k. There are now two subcases.

(2a) If W n Fk_x is nonempty, then put m[k = inf(W n Fk_x).

(2b) If W n Fk_x is void, put m'¡ = m, where y = min{r: mr G W).

In both subcases, put Tk = (m¡, m!); Fk = Fk_x u {m¡k, m'¡k) and Ek = Ek_x u

{mik} if m'ik G M+ or else Ek = Ek_x u {w^, m^} if m'¡k G M~. We omit the

routine proof that the inductive hypothesis is satisfied. We now define S, a family

of open intervals in (D,<) by S = {Tk: k G u). The family S has the following

properties.

(1) For each S G S, X(S), p(S) G M u {-00, +00}.

(2) {X(S): S G S } D M+ and {p(S): S G S } d M".

(3) For any S, 71 G S, either 5 n T = 0 or 5 £   T or S ^  T.

(4) For every S G S, 1(5) = |{T G S : T D 5)1 is finite.

(5) If S„ G S (« G co), and S„ D S„+1 for ail n, then | D S„\ < 1.

Conditions (1) and (2) are clear. (3) and (4) amount to saying that (S ,d) is a tree

of height < co and levels S„ = [S G S : 1(5) = n); they follow from (I). Condition

(5) follows from the definition of W, which implies that ttj is contained in at most

two elements Tk of S for which k >j, and then only when X(Tk) or p(7^) is an

extreme point of w>.

We now define an order <w on D as follows.

For x, v G D with x < v, let n(x,y) = \{S G S : x,y G S}\; by conditions (3)

to (5), n(x, y) < u. We put x <w v if n(x, v) is even, y <a x otherwise. It is

straightforward to check that <w is transitive, and hence a linear order on D. (It

may be thought of as a limit of orderings: define <o by inverting < on each

member of S0 (= {D}), then define <i by inverting <o on each member of Si, etc.

Conditions (3) to (5) state that for any pair of distinct elements x,y G D, there is

n0 G co such that if n > nQ, then x <„ v if and only if x <n0y- Thus the limit order

is well defined.)

Let t (resp. tu) he the topology induced on X by < \X (resp.<u|A"), and let tr he

the relative topology on X that is inherited from (D, <). We shall show that

tr = t V tu.

We begin with two simple observations. First, tr D t. Second, suppose that

x G A" is an element of infinitely many members of S ; it is easy to see that these

(or their traces on X) form a local base at x in any of the spaces under

consideration. (X is < -order dense in X u M; in particular, X o S ¥= 0 for each

S G S.)

We now show that tr G t\J tu. Fix x G X and suppose that x is not a ir-limit

point of a set A c X. We assume that x is a /-limit point and show that it is not a
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/„-limit of A. Thus we may assume, say, that A c (x, +«>)< (where ( , )< denotes

an open interval in the order <), and so there is a missing point x+. Let

k = min{y G co: x+ = X(S) for some S G S.}, and fix S G Sk such that x+ =

X(S). Let 3" = {T G S : T c S and T G Sk+X}. There are now three cases to

consider.

(a) If ?F ¥= 0 and there exists T G *ö such that X(T) > X(S), then we can assume

that A g (x, X( T))< and pick y G T. It is easy to see that y is <u-between x and

A.

(b) If no T as in (a) exists, but 5" ¥= 0, then by (3) there is T e f such that

p(T) < p(S). Thus we can fix y G S — T and assume that A c (x, v)<. Again it is

clear that y is <u-between x and ^4.

(c) If 9" = 0, then we may fix y G 5 and assume that A c (x, y)<. Then y

is <w-between x and A.

In all three cases it follows that x is not a /„-limit point of A and hence that

tr G t V ru.

To complete the proof we must show that tr d /„. To this end, fix x G X, and

suppose that x is a /r-limit point of a set A c A'; we may further assume that

A G (x, +00)^ so that there is no missing point of the form x+. By the second of

the above observations, we may assume that there is a smallest Sx G S containing

x (otherwise x is clearly a /„-limit point of A), and that A c (x, p(Sx))<. Now

suppose that n = l(Sx) + 1 and let ?T = {T G %„: T g (x, p(5J)<}. If there is

y G X such that x < y < z for all z G A n U !T (which is vacuously true if A n

U 5" = 0), we may assume that An  U ST = 0. Pick a G .4. Then we have

(i) x is a /r-limit point of A n [x, a]<,

(ii) < and <u> agree up to inversion on (A n [x, a]^) u {x}, and

(iii) [x, a]< is order-convex in the order <u, and so x is a /„-limit point of A.

If no such y exists, then we may assume that ^cUÎ, and that \A n T\ < I

for each Î6Î. Moreover, the orders induced on the quotient set [x, p(5Jt))</?T

(obtained by collapsing each element of 'ÏÏ to a point) by < and <„ are identical

up to inversion and so once again x is a /„-limit point of A. Hence tr D /„.

Thus tr = t V tu, as required.
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