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EMBEDDrNG THE FREE GROUP F(X) INTO F( ßX)

TEMPLE H. FAY, M. RAJAGOPALAN AND

BARBARA V. SMITH-THOMAS

Abstract. We show that for a Tychonoff space, X and the canonical embedding

ßx: X -^ßX, the induced homomorphism Fßx: F{X)^> F{ßX) is an embedding

between the free topological groups when X has the property that X" is pseudo-

compact for all n > 1. An application of this result is if A" is such a space and ßX is

O-dimensional, then F(X) is O-dimensional.

Introduction. Let A" be a Tychonoff space and ßx: X -» ßX the canonical dense

embedding of X into its Stone-Cech compactification. In 1976, Hardy, Morris, and

Thompson [7] raised the question of when the induced homomorphism Fßx:

F(X) -> F( ßX) is an embedding. Here F(-) denotes the free topological group

functor. Fßx is always continuous and injective, but need not be an embedding; a

striking example of this is given by choosing X = R.

In this paper we show that Fßx is an embedding when X has the property that

X" is pseudocompact for all « > 1. More generally, if A" is C*-embedded in Y and

X" is pseudocompact for all n > 1, then F(X) is embedded as a topological group

in jF( Y). These theorems extend Ordman's result that if A" is a compact subspace of

Y, then F(X) is embedded in F(Y) [11]. Recently E. Nummela has improved our

result. Using free uniform groups he has shown that it suffices to assume only that

X itself, rather than all finite powers of X, is pseudocompact [10].

The class of spaces X with the property that X" is pseudocompact is fairly

extensive. Examples include the Tychonoff plank, /?N \ {p} wherep is a .P-point of

ßN, the ordinal space [1, ñ), and of course any compact space.

As an application of this result, we show that if X has the property that X" is

pseudocompact for all n > 1, and is strongly O-dimensional, then F(X) is O-dimen-

sional.

Preliminaries. The free topological group F(X) over a pointed space (A", e) was

introduced by Graev [6]; algebraically it is the free group over X \ {e}, and it

carries the finest group topology making the inclusion of X into F(X) continuous

(this inclusion carries e to the group identity). It turns out that F(X) is independent

of the choice of the base point and the inclusion of X into F(X) is a closed

embedding exactly when A is a Tychonoff space. In this case F(X) is also

Tychonoff and, consequently, in this paper we assume all spaces to be Tychonoff.
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The nature of the topology on F(X) has proved to be rather intractible; however,

good results have been obtained in the case that A" is a A:„-space. Recall that a

space X is a ka -space provided it is a weak union of countably many compact

subsets; see [3, 9, 11]. In this case F(X) is also ka and the topology on F(X) is

more clearly understood; in particular F(X) is the weak union of the subsets F(X)n

defined later in this paper [11].

The free topological group over X is free in the classical sense. That is given any

continuous /: X —> G, where G is a topological group and fie) = eG, there is a

unique continuous group homomorphism / making the following diagram com-

mute:

F(X)

Thus F is functorial; that is, if /: X -» Y is a base point preserving continuous

function then/lifts to a continuous group homomorphism F(f): F(X) —» F(Y). In

particular if i is the inclusion mapping of X into Y then i lifts to a continuous

injective group homomorphism F(i): F(X)^>F(Y). (We always choose the base

point of T to be the base point of X, since F(X) and F(Y) are independent of

choice of base point.)

There is another notion of free topological group due to Markov [8]. The Markov

free topological group FM(X) over X has for underlying group the free group on A*

itself (rather than X \ {e}). The description of the topology of FM(X) is similar to

that of F(X) [13]. In fact, FM(X) is isomorphic to F(X u {e}) where e is not an

element of X; thus without loss of generality we restrict ourselves to considering

the Graev free group.

Lifting the embedding. It has been known for a long time that F(i): F(X)^>

F( Y) need not be an embedding. For a fairly simple example take X = N and

Y = aN, the one point compactification of N; F(N) is discrete but its image in

F(aN) is not [13]. In [7] Hardy, Morris, and Thompson showed that if A" is a

noncompact rc„-space then the topology F(ßx)(F(X)) inherits from F(ßX) is not

the free topology. In particular F( ß^): F(R) —> F( ßR) is not an embedding.

Until now the best results in the positive direction have been that if X = C is a

compact subspace of Y then F(i): F(C) -+ F( Y) is an embedding [11], and that if X

is a closed subspace of a normal space Y then F(i): F(X) —> F(Y) is an embedding

[10]. In this paper we establish

Main Theorem. If X is a Tychonoff space with the property that X" is pseudocom-

pact for all n > 1 then the subgroup of F( ßX) generated by X is isomorphic, as a

topological group, to F(X).

We need the following preliminary definitions, lemmas and theorems.

Notation. Every element w of F(X) has a reduced representation xf'Xj2 • • • xf

where, for each i, e, = ± 1 and x, G X. We call n the length of w, unless w = e. If

w = e we say w has length 0. Thus if the length of w is > 1, e does not appear in
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its reduced representation. We denote the (closed [6]) subset of F(X) consisting of

all words of length < n by F(X)n.

Definition 1. Let n G N; let X* = X" X {-1, 1}". Thus an element of X* is a

pair ((x,, x2, . . ., x„), (e,, e2, . . ., e„)) where each x, G X and each e, = ±1. We

say that two elements ((x,, . . . , x„), (e,, . . ., e„)) and ((yx, . . . ,yn), (Sx, . . ., 8„))

are related if xf1 • • • x* and .yf' • • • y%" represent the same element of F(X). Call

this equivalence relation R„. Similarly let (ßX)* = (ßX)" X {-I, 1}" and denote

by R„ the relation on (ßX)* whose definition is obtained by replacing F(X) by

F(ßX). Note that R„ = r\ n X* X X*.

Definition 2. Let X* and (ßX)* he as in Definition 1. Let/: A"*->.R be a

real-valued function; / is said to respect Rn if it is constant on equivalence classes

(mod R„). Similarly g: (ßX)*—»R respects Rn if it is constant on equivalence

classes (mod Rn).

Definition 3. For each n G N, define m„: X* -» F(X) by

mn((xx, ..., x„), (e„ ...,£J) = x'x< ■ ■ ■ X?,

and define m„: (ßX)* -* F(ßX) by

ñn((ZV • • • - Zn)> («1. • • • > U) = Z\    •   ■   ■  Zn-

Note that the image of m„ is F(X)„, that the image of m„ is F(ßX)n, that two

elements a and b of X* are related by R„ if and only if mn(a) = m„(b), and that

two elements ä and b of ( ßX)* are related by Rn if and only if m„(a) = mn(b).

Observe that mn and m„ are both continuous; we only argue that m„ is

continuous. The proof for m„ is similar. First note that mx: X X {-1, 1} —> F(X) is

continuous since X and (x~'|x G A"} are both subspaces of F(X) and the only

action of mx is to identify ex with e~x. Then mn is essentially the composition of the

product of mx with itself n times followed by multiplication in F(A").

Lemma 4. If X" is pseudocompact then F(ßX)n is the Stone-Cech compactification

ofF(X)n via the canonical jn: F(X)„ -+ F(ßX)n.

Proof. Consider the following commutative diagram:

m„l J,m„

F(X)n        t        F(ßX)„

where ßx: X -^ ßX is the canonical inclusion and/„ is the restriction to F(X)n of

F(ßx). Note that ßx X id is an embedding and/„ is continuous and one-to-one,

and has dense range. Further mn is a quotient map since it has compact domain, so

if g': (/?x)*—»R is continuous and respects Rn then there is a continuous g:

F(ßX)„ -> R such that g' = g ° m„.

Now note that if /': X* -^R is continuous and respects R„ and if g': (ßX)* -+ R

is a continuous extension of/' then g' respects Rn. For suppose a = ((xx, . . ., x„),

(e„ . . . , £„)) and b = ((y„ . . . ,y„), (8X, . . ., Sn)) with a and b in Rn \ Rn. If

m„(a) = mn(b) has no occurrences of elements of ßX \ X in its reduced representa-

tion then there exist two nets [aa], {ba) in X*, on the same directed set, with
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aa —» a and ba^>b and with every term in either net having reduced representation

m„(a) = m„(b), since the x,'s in a, and the y,'s in b which are from ßX \ X must

occur in cancelling pairs. It follows that g'(a) = g'(b). If m„(a) = mn(b) has some

elements of ßX \ X in its reduced representation, then we can find for each such

element a net in X (all on the same directed set if more than one) converging to

that element. Replacing the noncancelling elements of ßX \ X in both a and b by

the corresponding nets from X chosen above, we obtain nets {aa} -» a and

{ba} ^> b with the property that, for all a, mn(aa) = mn(ba) and whose reduced

representations contain no letters from ßX \ X. Since we have already shown that,

for all a, g'(aa) = g'(ba) we can conclude that g'(a) = g'(b).

Finally let /: F(X)„ —> R be continuous; / is necessarily bounded since X* is

pseudocompact and m„ is onto. From Glicksburg's Theorem [5] we know that

(ßX)* = ß(X*) so/' = / ° mn: X* -h> R extends continuously to some g': (ßX)* -+

R. By the above argument g' respects R\; hence there exists a continuous g:

F(ßX)n -» R such that g ° rhn = g'. Since mn is onto, it follows that/ = g °jn, that

is g extends / continuously. Thus ß(F(X)n) = F(ßX)n.

Lemma 5. If each X" is pseudocompact then every bounded continuous function f:

F(X) —> R extends to a bounded continuous function g: F(ßX) —» R.

Proof. Without loss of generality we may assume /: F(X) -> [0, 1]. For each n

let/,: F(X)n -»[0, 1] be the restriction of/ to F(X)n. By the preceding lemma/,

extends to a continuous function gn: F(ßX)n^>[0, 1]. Moreover, since each/n+1

extends /„ it follows that each gn+x extends gn. Now, since ßX is compact and

F(ßX) is a &„-space with ^„-decomposition U"_, F(ßX)n [1], the function g:

F(ßX)-*[0, 1] which coincides with each g„ on F(ßX)n is continuous. This g

clearly extends/.

Main Theorem. // each X" is pseudocompact then F(ßx): F\X) —> F(ßX) is an

embedding.

Proof. From the preceding lemma we see that each bounded continuous /:

F(X) —> R extends to a continuous bounded g: F(ßX) -» R and thus extends to a

continuous g: ß(F(ßX))^>R. Clearly the composition F(X)^Fißr) F(ßX)^>

ß(F(ßX)) has dense range so ß(F(ßX)) = ß(F(X)). It follows that F(ßx) is an

embedding, since all the spaces are Tychonoff.

Corollary 6. // X is C*-embedded in Y and, for each n > 1, X" is pseudocom-

pact, then F(X) is embedded as a topological subgroup of F( Y).

Proof. Suppose X is C*-embedded in Y; then cl/8r(A') » ßX [4]. Consider the

following commutative diagram:

F(X)

F(i)i

F(Y)

F(.ßx)
F(ßX)

mm)
F(-}     F(ßY)
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Each of the maps is F of an inclusion. From Ordman's result stated above F( ß(i))

is an embedding; we have just shown that F(ßx) is an embedding. It follows that

F(i) is an embedding.

Some examples. Our first example shows that in Corollary 6 some hypothesis is

needed concerning the way X is embedded in Y. Let Y he the union of two copies

of ß + 1, say [0, ß] u [0, ß]* with ß and ß* identified. Let X = Y \ {ß} and let

both have e = 0. Then X is the disjoint union of two copies of ß, so X" is

countably compact for all n. However, A is not C*-embedded in Y, for the

function /: X —► R which is 0 on the first copy of ß in X and is 1 on the second

copy of ß does not extend to Y. This same function can be used to show that F(X)

is not a subspace of F(Y) via the lifted embedding. For, the net wa = a* ■ a~x

clearly converges to e in Y, and thus also converges to e in the subspace topology

the subgroup generated by A inherits from F( Y). On the other hand, the function /

lifts to a unique group homomorphism/: F(X) —* R. For every a,f(wa) = 1 ^ 0 so

wa cannot converge to e in F(X).

Some examples to which our Main Theorem does apply are: Let X be the ordinal

space ß; then ßX = ß + 1 and F(ü) is a subspace of F(ß + 1). Let X he the

Tychonoff plank T; then ßX = (ß + 1) X (to + 1) and F(X) is a subspace of

F( ßX). Let A = ßN \ {p} wherep is a P-point of 0N; then ßX = ßN and /TA") is

a subspace of F(ßN).

An application. In [2] we show that if A" is O-dimensional then F(X) is totally

disconnected. It follows that if A" is a /t„-space, X is O-dimensional if and only if

F(X) is O-dimensional. However, it is not known in general if A is O-dimensional

whether F(X) need be O-dimensional. For example, it is unknown if F(R \ Q) is

O-dimensional. As an application of our Main Theorem, we enlarge the class of

spaces A for which it is known that F(X) is O-dimensional.

Theorem. If X is a strongly O-dimensional space with the property that X" is

pseudocompact for all n > I, then F(X) is O-dimensional.

Proof. Since A is strongly O-dimensional, ßX is O-dimensional and thus F(ßX)

is O-dimensional. F(X) being embedded in F( ßX) is necessarily O-dimensional.

Thus the free group F(X) is O-dimensional if X is the Tychonoff plank, ßN\ [p]

where p is a P-point of ßN, or the ordinal space [1, ß).
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