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A LOCALLY CLOSED SET WITH A SMOOTH GROUP

STRUCTURE IS A UE GROUP

ARMANDO MACHADO1

Abstract. We prove the following result. Let V be a smooth manifold and let

Gc Cbea locally closed set with a group structure such that both multiplication

and inversion are smooth maps; then G is an imbedded smooth submanifold of V.

This result is a generalization of the well-known fact that a closed subgroup of a

Lie group is itself a Lie group, because we are not assuming any group structure in

the manifold V.

1. Introduction. Our aim is to prove the following result.

Theorem. Let V be a finite-dimensional manifold of class Cp+X (1 < p < +00)

and let G G V be a locally closed set with a group structure, such that the

multiplication tr: G X G —> G is of class Cp+l and the map £: G —» G , which takes

each element into its inverse, is of class C . Then G is an imbedded submanifold of

class C of V.

We present in the next paragraph the tools used in the proof of the theorem, and

the third paragraph will consist of this proof.

2. Tools and notations. The word manifold will mean always a finite-dimensional

boundaryless manifold, not necessarily paracompact or Hausdorff. By submanifold

we mean always an imbedded submanifold.

Let V and V he manifolds of classs C. If A c V is a set, we say that a map/:

A —> V is of class C if, for each a G A, there is an open neighbourhood U of a in

V and a C map /: U —> V such that / and / agree on A n U (we call / a local

extension off). Equivalently, one may replace V and V in the definition by two C

submanifolds V0 and V¿, such that A c V0 and f(A) c V¿. As usual, the composite

of two C maps is again a C map. If A c V and A' G Va bijective map /:

A —> A' is called a C diffeomorphism if both/ and/"1 are of class C. In the case

where A gRn and f:A—> RN is a map, a standard partition of unity argument

shows that / is of class C if and only if there is an open set U containing A and a

global extension/: U —> R* of /of class C.
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If A G RN is a set and if a G A, we say that h G RN is strictly tangent to A at a

(Bouligand [2]) if there exists a sequence xnG A, with x„—»a, and a sequence

/„ G R, with /„ > 0, such that t„(xn - a) -» A. We will denote by ta(A) the set

whose elements are the strictly tangent vectors to A at a; it is not in general a

vector space in R^, but it is always a closed cone that contains 0. We will denote

by Ta(A) the vector space spanned by ta(A) and its elements will be called tangent

vectors to A at a. These notions are local, in the obvious sense, and, if A c R^ is an

open set, ta(A) = Ta(A) = RN.

If one uses the definition of the derivative of a map, one proves very easily the

following two propositions.

2.1. Proposition. Let A gRn and f: A -> R* be a Cx map. If a G A and iff:

U -» R^ and f: U' —* RN are two C ' local extensions off whose domains contain a,

then the linear maps Dfia) and Df'(a), from RN into RN, agree on Ta(A).

This proposition allows us to consider a well-defined linear map Dfia): Ta(A) —>

RN, which we call the derivative of / at a. The second proposition shows that this

notion of derivative is functorial.

2.2. Proposition. Let A c RA', A' cR" and f: A -> A' be a Cx map. Then, for

each a G A, Dfia) maps Ta(A) into T^a)(A') and ta(A) into tj^ay[A').

The functoriality is completed by the chain rule, which follows trivially from the

usual chain rule for maps defined on open sets. By a functorial argument, the

following proposition follows.

2.3. Proposition. Let A g Rn, A' cR"' andf: A -*A' be a Cx diffeomorphism.

Then, for each a G A, Dfia) is an isomorphism from Ta(A) onto T^a^(A'), and maps

ta(A) onto tM)(A').

We extend now in a natural way the definition of ta(A) and Ta(A) to the case

where V is a C1 manifold and A g V. Choose in fact a local parametrization <p:

W -» U, where W is open in RN and U is an open neighbourhood of a in V and let

<p(b) = a. Then D<p(b) is an isomorphism from RN onto Ta(V) and we define

ta(A) and Ta(A) to be the images by this isomorphism of tb(tp'x(A n U)) and

Tb(<p~x(A n U)). Using Proposition 2.3, this definition is seen to be independent of

the parametrization we have chosen. One sees easily that these definitions remain

equivalent if instead of V one uses a submanifold VQ such that A c V0. It is now

straightforward to prove the analogue of Proposition 2.1, with two Cx manifolds V

and V instead of RN and RN, which enables us to define Dfia) as a linear map

from Ta(A) into T^a)(V), and to prove then the analogues of Propositions 2.2 and

2.3. We will also refer to these generalizations as Propositions 2.2 and 2.3.

Let V and V he Cx manifolds and let a G A g V and a' G A' G V. Applying

Propositions 2.2 and 2.3 to the canonical projections A X A' -» A and A X A' ^>

A' and to the canonical injections A^A x A' and A' —>A X A', we get the

following.

2.4. Proposition. We have

T(a,al(A XA')= Ta(A) X Ta.(A%       W^ x A') <= ta(A) x U**)-
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We will also use tangent fields defined on a set A contained in a manifold V.

Suppose that V is a manifold of class Cp+X, that A g V and that X: A -» is a

vector field, i.e. A is a map such that A"(x) E Tx( V) for each x G A. We say that X

is of class C if it happens so to the corresponding map from A G V to the tangent

bundle T(V)of V.

We pass now to the only nontrivial result of this paragraph. For simplicity, and

because it is the only case we will have to use, we will quote only the R^-version of

this result.

Suppose that U c RN is an open set and that X: U^>RN is a C map, where

1 < p < + oo. We can then take the flow of X, which is a C map F: ß —* U, with

ß open in R x U and containing {0} X U, such that

F(0, x) = x,       (dF/3/)(/, x) = X(F(t, x)).

2.5. Theorem (Brézis [3]). Let U c RN be an open set and X: U->RN be a Cx

map, and let F: ß —» U be its flow. Let A be a closed set in U such that, for each

xGA, X(x) G tx(A). If (/, x) G ß, with x G A and t > 0, then F(t, x) G A.

In fact, the result proved by Brézis is the theorem stated above, but with a

stronger notion of strictly tangent vector that was not suitable for our purposes. A

proof of this result, with the notion of strictly tangent vector we are using, can be

found in [4] and is just a sharpening of Brézis's proof.

The conclusion of Theorem 2.5 can be stated by saying that the set A is

flow-invariant to the right side. Applying the result to the vector field -A, we have

2.6. Corollary. Let U gRn be an open set and X: U^RN be a Cx map, and let

F: ß—» U be its flow. Let A be a closed set in U such that, for each x G A,

-X(x) G tx(A). If (/, x) G ß, with x G A and t < 0, then F(t, x) G A.

3. Proof of the theorem. The main part of the proof will consist of the following

lemma.

3.1. Lemma. Let V be a Cp + X manifold, with 1 < p < +oo. Let A G V be a

locally closed set and, for each 1 < i < k, let X¡: A —» be a vector field of class Cp

such that, for each x G A, X¡(x) G tx(A) and -X¡(x) G tx(A). Suppose that a G A is

such that the vectors h¡ = X¡(a), with 1 < i < k, are a basis for Ta(A). Then there

exists an open neighbourhood W of a in A such that W is a k-dimensional C

submanifold of V.

Proof of the lemma. The result being local, we can suppose that V is R^. Then

each A, is a C map from A into R^ and we can fix an open set U of R^ containing

A and, for each 1 < i < k, a C extension A,: U^RN of X,. The fact that A is

locally closed allows us to suppose that A is closed in U, taking eventually a

smaller U.

For each 1 < i < k, let Ft: ß, -» U he the flow of X,. We know that F¡ is a C

defined in an open set ß, in R X U which contains {0} X U. The result of Brézis

and its corollary (Theorem 2.5 and Corollary 2.6) show us that if (/, x) G ß, and

x G A, then F¡(t,x) G A.
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Fix e > 0 such that we have a well-defined Cp map F: ]-e, e[* X Be(a) -» U,

F(tx, ...,tk,x)= Fk(tk, Fk_x(tk_x, ..., Fx(tx, x),. . . )),

where Be(a) is the open ball. Fix r > 0 such that we have a well-defined Cp map cp:

\-r,rf-*A,

<p(/„ ...,tk) = Fx(tx, F2(t2, ..., Fk(tk, a),... )).

We have tp(0, ...,/„..., 0) = F¡(t¡, a); hence

(9<p/3/,)(0, . . ., 0) = Xt{a) = h.

We now choose vectors hk + x, . . . ,hN inRN such that the h¡, with 1 < i < N, are a

basis for R", and we define a Cp map uV: ]-r, rf -> RN,

Mu> •••>'*) = <p('i> • •-.'*) + h+\K+\ + • • • +'A-
We have uV(0) = a and, for 1 < i< N, (d^/dt^O, . . . , 0) = h¡, so that by the

inverse function theorem we conclude that, taking a smaller r, \¡/ is a diffeomor-

phism of ]-/•, /-[^ onto an open subset U' of RN. We can also suppose that r < e

and that U' c ß£(a).

We will now prove that if r is small enough, then i//(/,, . . . , tN) G A implies

tk+x = tk+2 = ■ • • = tN = 0, which will prove the lemma, with W = U' C\ A.

Suppose that this was not the case and let us try to get a contradiction.

We can find sequences /, „ -» 0, t2n -*f>,..., tNn —* 0, such that ip(tx n, . . . , tNn)

G A and, for each n, at least one of the t¡ „, with i > k + l,is nonzero. Let

x„ = <p('i,„> • ■ •. '*,„) e ¿>    yn = «K'i.n> • • » t*J ë A>

so that each y„ - x„ is a nonzero vector of the vector space E spanned by the

h¡, with / > k + I. If necessary taking a subsequence, we will suppose that

\\yn ~ x„\\~x(yn — xn) converges to a norm-one vector z G E. We will prove that

z G ta(A), and this will be the contradiction. Remark that we have

a  =   f\-t\j» •  •  • '  ~lk,n' Xn)

and let

Zn =  H-'l,*' • • • '   -tk.n'yn) G A-

Let 5 > 0. The fact that F is a C ' map allows us to fix 0 < e' < e such that if

|/,| < e' and x,y G Be(a), then

|| DF(tx, ...,tk,x)- DF(0, . . . , 0, a)|| < S.

Remarking that F(0, . . . , 0, x) = x, we see that, for each h G RN,

DF(0, . . ., 0, a)(0, . . . , 0, h) = h. Hence, using the second mean value theorem, if

|/,| < e' and x,y G Bt(a), then

||F(/„ . . . , tk,y) - F(tx, ...,tk,x)-(y- x)\\ < 8\\y - x||.

Specializing, we get, for n large enough,

\\zn - a - (yn - xJll <5||vn-x„||,

II \\yn - x„\rx(zn -a)- \\yn - xJ|-'( y„ - x„)|| < S,

so that

II 11^ - xn\\-\zn -a)- \\y„ - xn\\-x(yn - xn)\\^0
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and

\\yn -xn\\-\zn-a)^z,

which by definition means that z G ta(A), as we wanted.

Remark. J. Eells called my attention to a paper of Stefan [6]. If one uses the

results of this paper, one can give a shorter, although much less elementary, proof

of the preceding lemma which would use in any case the theorem of Brézis.

Proof of the theorem stated in the introduction. Let e he the unit element

of the group G and let Ä,,..., h\ be a basis for Te(G), such that each A, belongs to

te(G). For each x G G, let Lx: G->G be the map defined by Lx(y) = x-y =

tt(x, y); it is a Cp+X map, and, in fact, a Cp+X diffeomorphism, its inverse being

Lx-¡: G —> G. For each 1 < i < k, we define a vector field AT: G—» by X,(x) =

DLx(e)(h,); in fact, we even have X¡(x) G tx(G). Using the fact that DLx(e):

Te(G) -» TX(G) is an isomorphism, it follows that, for each x G G, the vectors

X¡(x), with 1 < i < k, are a basis for TX(G). Each A, is a Cp vector field, because

we have X¡(x) = Dtt(x, e)(0, h,). If we can prove that, for each x G G, -X¡(x) G

tx(G), we can apply the preceding lemma and we get our theorem. For this it will

be enough to prove that -h¡ G te(G) and that is what we are going to do now. First,

we remark that Dtr(e, e)(h, k) = h + k. In fact, from tr(x, e) = x, we get

Dir(e, e)(h, 0) = h, and from ir(e,y) = y, we get Dit(e, e)(0, k) = k; hence

Dm(e, e)(h, k) = Dm(e, e)(h, 0) + Dm(e, e)(0, k) = h + k.

Next we remark that D£(e)(h) = -h. In fact, from e = tr(x, £(x)), we get

0 = £hr(e, e)(h, D£(e)(h)) = h + Di(e)(h).

Now, as £ is a C1 map from G into G, we conclude that -A, = Z>£(e)(/i,) G te(G) as

we wanted.

Remark. Perhaps the natural framework for the theorem that we have proved is

Aronszajn's notion of subcartesian space (see [1] or [5]). In fact, we could state the

theorem as follows. If G is a Cp+X subcartesian locally compact space, with a group

structure whose multiplication is Cp+X and whose inversion is C1, then G is a Cp

manifold. The proof would be essentially the same, but in the analogue of our

Lemma 3.1, one would have to take a notion of tangent vector that is different

from the one used by these authors. The advantage of this framework is that we do

not need any ambient manifold V.
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