THE CAPACITY OF C_{5} AND FREE SETS IN $C_{m}^{\mathbf{2}}$

D. G. MEAD AND W. NARKIEWICZ

Abstract

In a recent paper, S. K. Stein examined the problem of determining the cardinality, $\tau\left(C_{m}^{k}\right)$, of the largest subset S of the direct product C_{m}^{k} of k copies of C_{m} such that distinct sums of elements of S yield distinct elements of C_{m}^{k}. In this paper we show that $\tau^{*}\left(C_{5}\right)=\lim _{k \rightarrow \infty}\left(\tau\left(C_{5}^{k}\right) / k\right)=2$, answering a question raised by Stein. We also produce an infinite set of m 's such that $\tau\left(C_{m}^{2}\right)>2\left[\log _{2} m\right]$.

Introduction. In [3], S. K. Stein examined from an algebraic standpoint a problem in information theory raised by Shannon [2] in 1956. Stein says that a subset $\left\{b_{1}, \ldots, b_{r}\right\}$ of a group G is free if $\sum \varepsilon_{i} b_{i}=0, \varepsilon_{i}=0, \pm 1$ implies $\varepsilon_{i}=0$ for all i. The number of elements, $\tau(G)$, in the largest free set in G, is also clearly equal to the cardinality of the largest subset S of G such that distinct sums of elements of S yield distinct elements of G. In [3], the free capacity of $C_{m}, \tau^{*}\left(C_{m}\right)$ is defined to be $\lim _{k \rightarrow \infty} \tau\left(C_{m}^{k}\right) / k$, where C_{m} is a cyclic group of order m. In this paper we show that $\tau^{*}\left(C_{5}\right)=2$ and compute $\tau\left(C_{m}^{2}\right)$ for certain values of m.

The free capacity of C_{5}. With $E_{i}=(0, \ldots, 0,1, \ldots, 0)$, the standard i th vector, we see that the set $E_{i}, 2 E_{i}, i=1, \ldots, k$, is free in C_{5}^{k}, hence $\tau\left(C_{5}^{k}\right) \geqslant 2 k$. Let $S=\left\{g_{i}=\left(a_{1 i}, \ldots, a_{k i}\right) \mid a_{j i} \in C_{5}, i=1, \ldots, N\right\}$ be a free set in C_{5}^{k}. Since the only elements in Z_{5} which are squares are $0, \pm 1$, the equation $\sum_{i=1}^{N} \varepsilon_{i} g_{i}=0$ is equivalent to the system $\sum_{i=1}^{N} x_{i}^{2} a_{j i}=0, j=1, \ldots, k$, to which the following corollary of the theorem of Chevalley-Warning [1] can be applied:

With $K=C_{5}$, let $\left\{f_{j} \in K\left[X_{1}, \ldots, X_{N}\right]\right\}$ be a set of homogeneous polynomials in N variables such that $\Sigma \operatorname{deg} f_{j}<N$. Then the f_{j} have a nontrivial common zero.
In our case, the degree of each f_{j} is 2 . If $N>2 k=\Sigma \operatorname{deg} f_{j}$, the f_{j} have a nontrivial zero, i.e. the set S is not a free set. This is a contradiction and we can conclude that $\tau\left(C_{5}^{k}\right)=2 k$. Consequently, the free capacity of $C_{5}, \tau^{*}\left(C_{5}\right)=$ $\lim _{k \rightarrow \infty} \tau\left(C_{5}^{k} / k\right)=2$.

Free sets in C_{m}^{2}. Since $\left[\log _{2} m\right] \leqslant \tau\left(C_{m}\right) \leqslant \log _{2} m$ and $\tau\left(C_{m}^{k+l}\right) \geqslant \tau\left(C_{m}^{k}\right)+\tau\left(C_{m}^{l}\right)$, it follows that

$$
2\left[\log _{2} m\right] \leqslant 2 \tau\left(C_{m}\right) \leqslant \tau\left(C_{m}^{2}\right) \leqslant\left[\log _{2} m^{2}\right] \leqslant 2\left[\log _{2} m\right]+1
$$

When m is a power of $2, \tau\left(C_{m}^{k}\right)=k \log _{2} m$; we find $\tau\left(C_{m}^{2}\right)$ for certain other values of m.

Theorem. $\tau\left(C_{m}^{2}\right)=2\left[\log _{2} m\right]+1$ if $3 \cdot 2^{a-1}<m<2^{a+1}$ for $a \geqslant 2$.

[^0]Proof. It is sufficient to show that the following set of $2 a+1$ elements is free:

$$
\begin{aligned}
& \left\{u_{1}=(1,0), u_{2}=(0,1), v_{1}=(1,2), v_{2}=(1,-2), w_{i}=\left(3 \cdot 2^{i},-3 \cdot 2^{i}\right)\right. \\
& \left.\quad i=0,1, \ldots, a-3, z_{j}=\left(3 \cdot 2^{j}, 3 \cdot 2^{j}\right), j=0,1, \ldots, a-2\right\} .
\end{aligned}
$$

We first show that the set of u 's, v 's, w 's, and z_{j} with $j \leqslant a-3$ is free. Assume that

$$
\begin{equation*}
\Sigma b_{i} u_{i}+\sum c_{i} v_{i}+\sum d_{i} w_{i}+\sum^{a-3} e_{i} z_{i}=0 \tag{1}
\end{equation*}
$$

where the b_{i}, c_{i}, d_{i}, and e_{i} are chosen from $\{0,1,-1\}$. Since

$$
3 \sum^{a-3} 2^{i+1}=3\left(2^{a-1}-2\right)<m-6
$$

it follows that the equation (1) must hold in $Z \times Z$. Thus

$$
\begin{align*}
& b_{1}+c_{1}+c_{2}+3 \sum 2^{a-3}\left(d_{i}+e_{i}\right)=0 \tag{2}\\
& b_{2} 2 c_{1}-2 c_{2}+3 \sum 2^{i}\left(-d_{i}+e_{i}\right)=0
\end{align*}
$$

If not all of b_{i}, c_{i}, d_{i}, and e_{i} are zero, then some d_{i} or e_{i} is not zero. Assume some $e_{i} \neq 0$ and let t be the largest i for which $e_{i} \neq 0$. Adding the equations (2) we find

$$
3 \cdot 2^{t+1}= \pm\left(b_{1}+b_{2}+3 c_{1}-c_{2}+3 \cdot 2 \sum^{t-1} 2^{i} e_{i}\right)
$$

which could only be true if $b_{1}=b_{2}=c_{1}=-c_{2} \neq 0$. Subtracting the second equation of (2) from the first, we see that some $d_{i} \neq 0$. With s representing the largest i such that $d_{i} \neq 0$, we have

$$
3 \cdot 2^{s+1}= \pm\left(b_{1}-b_{2}-c_{1}+3 c_{2}+3 \cdot 2 \sum^{s-1} 2^{i} d_{i}\right)
$$

which could only occur if $b_{1}=-b_{2} \neq 0$. This is a contradiction and since the same sort of reasoning can be used if some d_{i} is assumed to be nonzero, we conclude that the set of u 's, v 's, w 's, and z_{j} with $j \leqslant a-3$ is free.

We will now show that the assumption that

$$
\begin{equation*}
0=z_{a-2}+\sum b_{i} u_{i}+\sum c_{i} v_{i}+\sum d_{i} w_{i}+\sum^{a-3} e_{i} z_{i} \tag{3}
\end{equation*}
$$

leads to a contradiction.
Let

$$
\begin{aligned}
& A=3 \cdot 2^{a-2}+b_{1}+c_{1}+c_{2}+3 \sum^{a-3} 2^{i}\left(d_{i}+e_{i}\right) \\
& B=3 \cdot 2^{a-2}+b_{2}+2 c_{1}-2 c_{2}+3 \sum^{a-3} 2^{i}\left(-d_{i}+e_{i}\right)
\end{aligned}
$$

Since $-m<A, B<2 m$, equation (3) can hold only if A and B are in the set $\{0, m\}$.

Assume $A=B=m$. Then,

$$
\begin{aligned}
|A+B| & \leqslant 3 \cdot 2^{a-1}+\left|b_{1}\right|+\left|b_{2}\right|+3\left|c_{1}\right|+\left|-c_{2}\right|+3 \cdot 2 \sum^{a-3} 2^{i}\left|e_{i}\right| \\
& \leqslant 3 \cdot 2^{a-1}+6+3 \cdot 2\left(2^{a-2}-1\right)=3 \cdot 2^{a}<2 m=A+B .
\end{aligned}
$$

This contradiction shows that not both A and B can be m. Assume one of A and B is m and the other zero. Then,

$$
\begin{aligned}
|A-B| & \leqslant\left|b_{1}\right|+\left|-b_{2}\right|+\left|-c_{1}\right|+3\left|c_{2}\right|+3 \cdot 2 \sum^{a-3} 2^{i}\left|d_{i}\right| \\
& \leqslant 6+3 \cdot 2\left(2^{a-2}-1\right)=3 \cdot 2^{a-1}<m=|A-B| .
\end{aligned}
$$

From this we can conclude that $A=B=0$. Therefore

$$
A+B=3 \cdot 2^{a-1}+b_{1}+b_{2}+3 c_{1}-c_{2}+3 \cdot 2 \sum^{a-3} 2^{i} e_{i}=0,
$$

whence

$$
3 \cdot 2^{a-1}=\left|b_{1}+b_{2}+3 c_{1}-c_{2}+3 \cdot 2 \sum^{a-3} 2^{i} e_{i}\right| \leqslant 6+3 \cdot 2\left(2^{a-2}-1\right)=3 \cdot 2^{a-1},
$$

with equality only if $b_{1}=b_{2}=c_{1}=-c_{2} \neq 0$. However, if these conditions are satisfied, then

$$
A-B=b_{1}-b_{2}-c_{1}+3 c_{2}+3 \cdot 2 \sum^{a-3} 2^{i} d_{i} \neq 0
$$

From this final contradiction we conclude that the set of u 's, v 's, w 's, and z 's is a free set and that $\tau\left(C_{m}^{2}\right)=2\left[\log _{2} m\right]+1$ if $3 \cdot 2^{a-1}<m<2^{a+1}$ for $a \geqslant 2$. This completes the proof of the theorem.

References

1. Jean Pierre Serre, A course in arithmetic, Graduate Texts in Math., no. 7, Springer-Verlag, New York, 1973. MR 49 \#8956.
2. C. E. Shannon, The zero error capacity of a noisy channel, IRE Trans. Inform. Theory, IT-2 (1956), 8-19. MR 19 \#623.
3. S. K. Stein, Modified linear dependence and the capacity of a cyclic graph, Linear Algebra Appl. 17 (1977), 191-195. MR 57 \#2983.

Department of Mathematics, University of California, Davis, California 95616
Department of Mathematics, University of Wroclaw, 50-137 Wroclaw, Poland

[^0]: Received by the editors May 29, 1978 and, in revised form, April 17, 1981.
 1980 Mathematics Subject Classification. Primary 05B40, 05C25; Secondary 15A03.

