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COMPLETION OF A GAUSSIAN DERIVATION

JOHN A. EWELL

Abstract. The author supplies evaluation of two coefficients of an identity

partially derived by Gauss. Several special cases of this identity are then presented,

the last of these identities yielding an alternate proof of Ramanujan's theorem

concerning divisibility of certain values of the partition function by the modulus 7.

1. Introduction. In this paper we investigate the following identity

00

II (1 + ax2"-x)2(l + a-'x2"-1)2

(0)     "=I
= A0(x)   2    a2mx2n? + Ax(x) 2  x2",<'n+1>(a2m+1 + a-2m~l)

m°=-oo m=0

which according to MacMahon [3, p. 79] was first derived by Gauss. The deriva-

tion is valid for each pair of complex numbers a, x such that a ^ 0 and |x| < 1. It

seems that the coefficients A0(x), Ax(x) were left undetermined, and apparently

have never been determined. We here set for ourselves the goal of fining this gap.

Specifically, in §2 we prove

Theorem 1. For each given pair of complex numbers a, x with a^O and |x| < 1,

fi (1 - x2")2(l + ax2"-')2(l + a"1*2"-1)2
n-l

OO 00

m = ~co m = — oo

(1) =    2    x2m*   2    a2™-2™2

+ x   2    x2m(m+,) 2 x2m(m+1)(a2m+1 + a'2™-1).

m = -oo m = 0

§3 is devoted to the derivation of four special cases of identity (1). The fourth of

these identities expresses the infinite product 11(1 — x")6 as a sum of two double

series. In §4, we then sketch an argument which shows that this identity yields an

alternate proof of Ramanujan's theorem concerning divisibility of certain values of

the partition function by the modulus 7.

2. Proof of Theorem 1. For given a, x let the infinite product G(a, x) he defined

by
oo

G(a, x) =  u (1 + ax2"-')2(l + fl-'x2""1)2.
n = \

Received by the editors January 26, 1981 and, in revised form, May 22, 1981.

Key words and phrases. Identities, partition function, triple-product identity.

1980 Mathematics Subject Classification. Primary 05A19; Secondary 05A17.

© 1982 American Mathematical Society

0002-9939/82/0000-0431/$02.00

311



312 J. A. EWELL

Then, for each pair of positive real numbers A, X, with X < 1, G(a, x) converges

absolutely and uniformly for all pairs a, x such that A~x < |a| < A and |x| < X.

Hence, for a fixed choice of x, |x| < 1, G(a, x) defines a unique function of a,

which is analytic at all points of the finite complex plane except a = 0 where it has

an essential singularity. Accordingly,

00

G(a, x) = AQ(x) +  2 [A„(x)an + A_n(x)a->}.
n = l

where the coefficients An(x), A_n(x) are uniquely determined by the chosen x.

Now, G(a, x) = G(a~x, x), whence An(x) = A_„(x), for each positive integer n.

Hence,

(2) G(a, x) = A0(x) + f  An(x)(*" + «"")•
71=1

Next, we easily establish the identity G(ax2, x) = (ax)~2G(a, x). With the help of

(2) we expand both sides of this identity in powers of a, and subsequentiy equate

coefficients of like powers to obtain the following recurrence: An+2(x) =

A„(x)x2("+X\ We split cases according to the parity of n. In the case of n even

iteration of the recurrence yields the determination: ^42m(x) = A0(x)x2m, for each

nonnegative integer m. For n odd we have ^42m+i(x) = Ax(x)x2n*m+X\ for each

nonnegative integer m. Substituting these values into (2) we thus derive identity (0).

To evaluate the coefficients A0(x) and Ax(x) we appeal to the well-known

triple-product identity:

00 oo

II (1 - x2n)(l + ax2"-x)(l + a-xx2"-x) =    2   a"*"2-
„=1 «--00

For a proof see [2, p. 282]. We square both sides of the triple-product identity and

determine the coefficients of a0 and a + a~x for the right side of the resulting

identity. Straightforward partial expansion yields

(    2   a"xA2 =    2    x2"* + x   2    x2^m+x\a + a~x)
( rt — -oo J m = -oo m = -oo

+ a series in a", a~",       n > 1.

Between identity (0) and the square of the triple-product identity we eliminate the

product n"=,(l + ax2"-1)2^ + tr'x2"-1)2, and thereafter equate coefficients of a0

and a + a~x to obtain

A0(x) =  u (1 - x2")"2   2    x2m>,
n = \

am = n (i - x2t2x 2 x2m<m+x\
n=\

Substituting these values into identity (0) we thus prove our theorem.
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3. Special cases of identity (1).

Corollary 2. For each complex number x such that \x\ < 1,

(3) fi (1 - x2")(l + x2"'1)4 = f   f   *2m2f + A   f   x2"*^1))2;
„=1 [ n--oo J [ n--oo J

(4) fl (1 - x2")2(l - x2"-')4 - Í   2   x2*)2 - x(    2   x2«"*»)2.
n-1 I n--oo ) [ «--oo )

Proof. To obtain (3) let a = 1 in (1); and, to obtain (4) let a = -I.

Corollary 3. For each complex number x such that \x\ < 1,

fi (l-x")2=    2   x3"2   2   x"<3" + 1>
.•_.. n-1 «--oo n--oo

y3' oo oo

— X    "y     x3n(n + l)     V1     xn(3/i + 2)

Proof. For x = 0 the identity is trivially valid. For x ^ 0, in (1) we replace a

and x by -x1/2 and x3/2, respectively.

Corollary 4. For each complex number x such that \x\ < 1,

5(1- x")6 =    2   x"2 f (2« + l)2x"°,+1)
/gx n-1 n = -oo „_o

- 2 *n(n+1) 2 (2«)V\
n--oo „=i

Proof. For x = 0 the identity is trivially valid. For x ¥= 0 let a = -xe2", so that

(1) becomes

oo

(1 - e"2")2 II (1 - x2n)2(l - 2x2n cos 2i + x4")2
n-1

=    2   x2"2   2   x2"<"+1)e4n"
n = -oo n —-oo

2   x2"<"+1>( 2 x2nV4n-2>'v + f x^V^"*7
= -oo [ „=i n=o

H 2)1/

n —-oo

,.2n\2/i   _ 1v2» /-/^c Oí J.   v4"\2   -/'vï, = V  v2"2For brevity put/(i) = 11(1 - x2n)2(l - 2x2" cos 2/ + x4")2, c(x) = 2 x2", d(x) =

2 x2"(n+1) and multiply both sides of the foregoing identity by -4"1e2" to get

(7)      (sin2 t)f(t) = -\c(x) 2 x2"(n+1)cos(4« + 2)r + \d(x)   f¡   x2"2 cos Ant.
2 n=0 4 n--oo

Differentiating both sides of (7) twice with respect to /, we have

2 cos2 t-f(t) + 2 sin / • £>,{cos / -fit)) + D,{sin2 t -f'(t))

= 2c(x) 2 x2n("+,)(2rt + l)2 cos(4« + 2)f - 2d(x) 2 x2n2(2n)2 cos 4/ir.
n=0 n=\
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Now, setting / = 0, cancelling a factor of 2 from both sides of the resulting identity

and realizing that/(0) = 11(1 — x2")6, we replace x by x1/2 to obtain identity (6).

4. A theorem of Ramanujan. The theorem which here concerns us is

Theorem 5. For each nonnegative integer m,

p(lm + 5) = 0   (mod 7).

[For a given positive integer n,p(n) denotes the number of unrestricted partitions of n;

and, conventionally, p(0) =1.]

In  his  original  proof  [1,  p.  88]  Ramanujan begins  by  squaring Jacobi's

triangular-number identity:

3 (1 - x")3 = 2 (-1)"(2« + l)xn(" + ,)/2.
n-1 n=0

We here replace the square of Jacobi's identity by identity (6), and then multiply

by x2 to get

x2ñ(i-x-)6= 2  2(2/+i)V- 2   2(2*)V,
n = \ j = -ooj — 0 r —-oo s — \

where k = k(i,j) = i2 + j(j + 1) + 2; v = v(r, s) = r(r + 1) + s2 + 2. We now

seek necessary conditions for divisibility of k and v by 7. Since k and v are

symmetrically constructed in terms of squares and triangular numbers, it suffices to

deal with k. Now,

(Iff + (2j + I)2 + 7 = 4k.

Hence, k = 0 (mod 7) implies

(2z)2 + (2/ + l)2 = 0 (mod 7).

And, the foregoing congruence is satisfied only if 2/ = 0 and 2/ + 1 = 0 (mod 7).

Thus, k and v can be divisible by 7 only if 2/ + 1 and 2s, respectively, are divisible

by 7, and consequently the coefficient of xlm+1 in x2!!*,.! (1 - x")6 is divisible

by 7.

The proof is now completed just as in [1, p. 88].
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